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Spin dynamics
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Physics on three different scales

Micro-physics (Pair size) L1 ∼ ξ, λ ∼ 10-100 fm

Mesoscopic physics (vortex size) L2 ∼ dn ∼ 10−3 cm

Macrophysics (star size) L3 ∼ R ∼ km

There is a of scales hierarchy L1 � L2 � L3

Todays topic is the relation

Meso↔ Macro↔ Observations

from compact star rotational dynamics.
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Microscale physics

At low temperatures T ≤ Tc ∼ 109 K neutrons and protons form
Cooper pairs (super-fluidity, -conductivity).

Low density/energy order parameter (1S0 partial wave)

∆ = −iσy 1̂〈ψ(x)ψ(x′)〉 = −iσy 1̂〈ψ†(x)ψ†(x′)〉 ∼ 1 MeV (1)

High density/energy order parameter (3P2 partial wave)

∆ = σz 1̂〈ψ(x)ψ(x′)〉 = σz 1̂〈ψ†(x)ψ†(x′)〉 ∼ 0.1 MeV (2)

Color superconductivity - 2SC, LOFF, CFL etc: gaps are by 1-2
orders of magnitude larger
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Meso-scale physics

Long-wave length behavior is described by two fluid hydrodynamics:
(one-component neutral fluid)

ρ = ρS + ρN , ~vS , ~vN (independent) (3)

Superfluid is characterized by a single wave-function

ψ(~x) = f(x)eiθ, |ψ(~x)|2 = ρS , ~vS =
~
m
~∇θ(x) (4)

Superfluid flow is irrotational

~∇× ~vS = 0, (5)
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except when rotated with Ω ≥ Ωc1, quantized circulation!

~∇× ~vS =
2π~
m

,

∫
~vS · d~l =

2π~
m

. (6)

Concept of vortex (Feynman-Onsager, Abrikosov)
Ginzburg-Landau eq. for f(r) lead to:

d2f

dζ2
+

1

ζ

df

dζ
− 1

ζ2
f + f − f3 = 0, f(ζ) =





Cζ ζ � 1,

1− (2ζ2)−1 ζ →∞,
(7)

where ζ = x/ξn and ξn is the size of the vortex core.

Vortex velocity (axially symmetric solution)

vS =
~
mr

φ̂. (8)
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Including electro-magnetism

gauge invariant superfluid velocities

~vS =
~
m
∇θ − 2e

mc
~A, (9)

Vortex solutions

~∇× ~vS =
π~
m
~νS
∑

j

δ(2)(~x− ~xp)−
2e

mc
~B ≡ ~ωS , (10)

From ~∇× ~B = (4π/c)~jS and ~jS = ne~vS follows the London equation

~B + λ2~∇× ~∇× ~B = Φ0δ
(2)(~x− ~xp) (11)

λ - penetration depth, Φ0 - flux quantum.
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Isolated vortex solution

~vS =
~
mλ

K1

( r
λ

)
φ̂, K1

( r
λ

)
' exp

(
− r
λ

)
for r � λ. (12)

Current is screened beyond the penetration depth !

Two type of proton superconductivity (in analogy to ordinary
superconductors)

λ

ξ
≤ 1√

2
→ type I superconductivity

λ

ξ
≥ 1√

2
→ type II superconductivity

different response to the magnetic field !
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Vortex structure for type-II and domain structure for type-I

Vortex structure Domain structure 

For type-II the vortex number is n = B/Φ0.

For type-I the ratio of domain surfaces SS/SN = B/Hc2.
The size of domain is not determined and depends on nucleation
history
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Macroscopic rotation of a superfluid

Macroscopic rotation of a collection of vortices mimics rigid body rotation
~vS = ~Ω× ~r following from min[E − ~L · ~Ω]

Ω

Neutron vortex density (and Ω̇→ redistribution of vorticity)

nn =
2mnΩ

π~
. (13)
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Coexisting superfluids and superconductors

Type-II

λ

ξp
>

1√
2
, np =

B

Φ0
∼ 1018cm−2,

np
nn
∼ 1013. (14)

interactions vortex-vortex (generally at an angle) + electron fluid

Type-I

λ

ξp
<

1√
2
, nD unknown, domains carry field Hc2. (15)

interactions neutron vortex - normal domain protons + electrons

But, the physics of at macroscales can be worked out without explicit
reference to the mesoscale physics, just in terms of a few
phenomenological coefficients.
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Minimal superfluid hydrodynamics

Euler equations (Newtonian dynamics)

ρS

[
∂~vS
∂t

+ (~vS · ~∇) · ~vS
]

= −ρS
ρ
~∇p− ρS ~∇φ+ F, (16)

ρN

[
∂~vN
∂t

+ (~vN · ~∇) · ~vN
]

= −ρN
ρ
~∇p− ρN ~∇φ+ ηN∆~vN − F,

Friction force

~F = −
[
~ω ×

(
~∇× Λ~ν

)]
− β

[
~ν ×

[
~ω × (~vN − ~vS − ~∇× Λ~ν)

] ]

− β′
[
~ω × (~vN − ~vS − ~∇× Λ~ν)

]
+ β′′~ν ·

[
~ω · (~vN − ~vS − ~∇× Λ~ν)

]
,

Vortex line velocity vL

∂~ω

∂t
= ~∇× (~vL × ~ω) , (17)
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Vortex line velocity

~vL = ~vS + ~∇× Λ~ν + β′(~vN − ~vS − ~∇× Λ~ν)

+β
[
~ω × (~vN − ~vS − ~∇× Λ~ν)

]
. (18)

Force balance equation

ρS

[(
~vS + ~∇× Λ~ν − ~vL

)
× ~ω

]

−η (~vL − ~vN ) + η′ [(~vL − ~vN )× ~ν] = 0, (19)

Dimensionless drag-to-lift ratios are the key parameters:

ζ =
η

ρSω
ζ ′ =

η′

ρSω
(20)
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Evidence for S-fluidity: Glitches and post-glitch relaxation

Short time-scale (unresolved) jumps: ∆Ω/Ω ∼ 10−5 and ∆Ω̇/Ω̇ ∼ 10−3

followed by slow relaxation.
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Vortex dynamics theory predicts exponential relaxation which depends on
the (density dependent) lift-to-drag ratio ζ, whereby τ = (1/2Ω)

[
ζ + ζ−1

]

(limits!)
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Fits to the data allows to identify relaxation time scales

ν(t) = ν0 −
ν0

τ0
t−
∑

i

ISi
Ic

(
ν0

τ0
τi −∆νSi

)(
1− e−t/τi

)
(21)

ν̇(t) = −ν0

τ0
−
∑

i

ISi
Ic

(
ν0

τ0
τi −∆νSi

)
e−t/τi

τi
(22)

Unfortunately there is a degeneracy in the interpretation: the strong and

weak coupling theories can equally explain the data! But precession lifts

this degeneracy!
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Precession in PSR B1828-11 (data from I. Stairs et al)

Arrival time residuals, period residuals, and pulse shape parameter

(S = 0 narrow, S = 1 broad). Oscillations with 250, 500 and 1000 days
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Classical precessing body

How superfluid interiors modifies the precession dynamics?
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Precession in a two-component star

Divide the star into multiple shells with fixed moment of inertia and
the drag-to-lift ratios ζ, ζ ′

Solve the problem for a single shell; add further shells

Local hydro equations are then integrated over a given shell:

d(Icr ·Ωcr)

dt
= IsβΩs(Ωs −Ωcr) · (δ + Ω̂sΩ̂s) + Isβ

′(Ωs ×Ωcr)

= −Nβ −Nβ′ (23)

Is
dΩs

dt
= −IsβΩs(Ωs −Ωcr) · (δ + Ω̂sΩ̂s) + Isβ

′(Ωcr ×Ωs)

= Nβ + Nβ′ , (24)

where β and β′ are a different set of coeff. related to ζ and ζ ′.

model by Sedrakian, Wasserman, and Cordes (ApJ 99)
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Small amplitude solutions
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Precession modes as a function of the lift-to-drag ratio
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Other factors as multiple shell, external torques, etc do not change
this conclusion.

We see that large ζ exclude precession, observation of the
precession discriminates between weak and strong coupling theories

Our conclusions is a no-go theorem for precession:

Precession is impossible if there is a superfluid shell inside the star with drag-to-lift ratio

ζ � 1

Most of the theories (vortex creep in the crust or vortex cluster friction in
the core) predict strong coupling, i. e. no precession.
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Alternative: Tkachenko modes

First suggested by Ruderman in 1970 in a short letter to Nature, but no
detailed studies in the context of neutron stars:

∂j

∂t
+ (2Ω× j) +∇kτik + σ + ~∇P + ρ~∇φ = 0, (25)

∂w

∂t
+ (2Ω×w)− σ

ρS
− f = 0, (26)

∂vS
∂t

+

(
2Ω× ∂ε

∂t

)
+
~∇P
ρ

+ ~∇φ = 0, (27)

the vortex elastic force density defined is

σ = µS

[
2~∇⊥ · (~∇⊥ · ε)

]
− 2Ωλ

∂2ε

∂z2
, λ = (~ρS/8mN )ln (b/a) (28)

where µS = ρS~Ω/8mN is the shear modulus vortex lattice.
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The Newtonian gravitational potential satisfies the equation

∇2φ = ∇2(φS + φN ) = 4πG(ρS + ρN ), (29)

The stress tensor

τik = −η
(
∇ivNk +∇kvNi −

2

3
δik ~∇ · vN

)
, (30)

where η is the shear viscosity. The mutual friction force is

f = βρS

[
n×

[
ω ×

(
∂ε

∂t
− vN

)]]
+ β′ρS

[
ω ×

(
∂ε

∂t
− vN

)]
, (31)

where n ≡ ω/ω, ω is the quantum circulation
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Perturbation equations

Transverse modes satisfy

~∇ · jt = ~∇ ·wt = 0. (32)

The perturbation equations

∂ji
∂t

+ (2εlmnΩmjn + σl + kmτlm)Pil = 0, (33)

∂wi
∂t

+ (2εlmnΩmwn −
σl
ρS
− fl)Pil = 0, (34)

∂vi
∂t

+ 2εlmnΩm
∂εn
∂t

Pil = 0. (35)

where the projector Pil = δil − kikl/k2, k is the wave vector.
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Secular equation

Perturbations as ji(t) ∼ ji e2Ωpt, leads to det ||Kij || = 0 where

Kij =




p− η̃αd (γSh− 1) −η̃γSαd −γSγNh
d+ γSg p− η̃ γSγNg −η̃γS
−β̂g −β̂∗h p+ β̂(d+ γNg) −β̂∗(1− γNh)

−β̂∗g β̂h β̂∗(d+ γNg) p+ β̂(1− γNh)



. (36)

where γN/S = ρN/S/ρ, d1/2 = cos θ, β̂∗ = 1− β̂′, η̃ = ηk2/(2Ωρ),
α = (4− d)/3, β̂ = γ−1

N β, and β̂′ = γ−1
N β′ and

g =
k2

4Ω2ρS
[µS − d(µS − 2Ωλ)] , h =

k2

4Ω2ρS
[µS − d(µS + 2Ωλ)] . (37)

The (real) eigenfrequencies of these modes in units of 2Ω are

pI = ±i d1/2, pT = ±i [(d+ g) (1− h)]1/2 , (38)
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Illustration of the Tkachenko modes

Left panel: theoretical computation, right panel - JILA experiment on BEC
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Conclusion:

The glitches and post-glitch relaxations can be explained in the
strong- and weak-coupling limits. This degeneracy does not allow to
pin down the value of the mutual friction coefficient.

Precession lifts this degeneracy. It could be observed only in the
weak-coupling limit. However, many microscopic theories of mutual
friction predict strong coupling in the interiors of neutron stars.

It is unclear why precession is so rare. Interpretation of observation
PSR 1828-11 leaves the question why precession is not observed in
other systems (mind the timing noise).

The Tkachenko modes are an interesting alternative for explanation
of the quasiperiodic oscillations seen in the timing of pulsars. Much
work remains with respect to the understanding of survival of these
modes in a complex environment of neutron stars (damping,
non-linearities, stratification, etc)
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