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* Jet eruptive activity

young star formations (YSOSs)

neutron stars in a X-ray binary systems,
symbiotic stars,

galactic massive black holes (micro quasars)
gamma ray bursts (GRBs).

nuclear of active galaxies (AGNs)
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Equilibrium state of the polar cylindrical region
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Non linear instability of polar region against the Rankine vortex
perturbations

Basic equations
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Vortex type perturbation of the polar
regions of protostar
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Tangential velocity discontinuity
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The structure of the cylindrical vortex
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Isobaric surfaces

inthe r <r, region
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The unknown function C(t) - from continuity of isobaric
surface at the vortex trunk boundary r = r,
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Evolution of the isobaric funnel
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The approximate evolution of an isobaric funnel in
the region of a vortex through equal time steps
(scale lengths are not maintained).




Instability of the tangential velocity discontinuity
at the trunk boundary and the saturation of the
vortex.
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In an inviscid fluid (v = 0) surface perturbations with a tangential
velocity discontinuity develop during the initial stage as
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The maximum growth rate for the perturbations in a layer is
known to be attained for wavelengths on the order of its thickness
¢, i.e., with km=~1I{. In the case of surface waves, the layer

thickness is €~2((t), so that km~1 2{(t). So
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Thus, a turbulent transition layer of thickness 2 {(t) develops on the
surface of the vortex trunk with an effective turbulent viscosity
which, in the initial stage of the development of the instability, can
be estimated using the formula
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* The turbulent perturbations saturate when the rise in the kinetic
energy per unit time owing to instability in the tangential velocity
discontinuity ypv2 /2, approaches, in order of magnitude, the
power of the turbulent énergie dissipation per unit volume, pv3/¢.
Where v~ d{(t)/dt is the velocity of the turbulent fluctuations, £~
(1) is their characteristic scale length, and y~rtV/( is the maximum
growth rate of instability. So, the velocity of the turbulent
fluctuations is the same as the discontinuity in the tangential

velocity, i.e., v()=V (t).



* The angular acceleration in the rotation of the vortex trunk
ceases when the discontinuity V(t) in the tangential velocity
approaches the sound speed c,. The time t, for this process we
obtain giving V,, ® ¢, & y, ® ncy/(,,
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The longitudinal long-wave perturbations develop much more
slowly than the short-wave perturbations. Thus, saturation of the
vortical motion (i.e., termination of the exponential growth in the
angular velocity of the trunk and in the pressure drop on its axis)
occurs when the discontinuity in the rotational velocity reaches the
sound speed. The time ¢s for the vortex t_saturate is determined

from the equation
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e Lets R=10au and e = 3. Then p = 3M,_(1-e*)/2nR,* = 10" g/sm’,
and Q = 10%1, Q,~ 2-10%".

e LetH =0.2au, r,~ 0.5au, v, = w,r,~ 0.3km/s, v_.~ 1km/s - on the
trunk surface, and a sound velocity of c, % 50km/s. Then time of
saturation of a vortex: t_~ 2.4:10%s = 8 years, cylindrical vortex
length ~ 4au. Velocity on a protostar surface - v, % 80-120 km/s.

» A free path length of particles: {,~ m,, / na,?p = 10*sm, a,, - its Bohr
radius. Then (= 2-107sm, turbulent viscosity coefficient v* = 2-102
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Summary

* The appearance of a Rankine vortex in the polar layer of a
gravitating body produces a longitudinal flow of matter and a
radial converging flow toward the vortex trunk. These flows
provide for an exponential growth in the rotational velocity of
the trunk and in the pressure drop on its axis.

* The power law increases in the angular velocity and in the
pressure drop cease and the vortical motion enters a state of
saturation when the discontinuity in the rotational velocity at the
surface of the trunk reaches the sound speed. During this time
the vortical motion extends to ever deeper layers of the protostar.

* At the same time the longitudinal velocity along the vortex trunk
arises causing mass to flow out through the pole of the protostar
as a jet outflow.



Adiabatic expansion of the naked trunk

Submitted to the journal Astrophysics

* The vortical mechanism for the generation of
astrophysical jets is a unique way of converting
gravitational energy of a source into the kinetic
energy of an jet outflow.

* This mechanism can also provide for the acceleration
and collimation of jet flows beyond the confines of a
source.

* Emerging from the compact body the naked vortex
trunk enters a rarefied surrounding medium and
begins to expand.



* The following scenario for the outflow expansion can be imagined:
radial distension and expansion of the surface layers into the
rarefied surroundings.

* Radial distension converts the jet from a dense, rapidly rotating
state into a less dense, more slowly rotating state while conserving
its angular momentum.

* The matter flows out from the jet surface: initially the layers
adjacent to the boundary come into motion, and ever deeper regions
away from the boundary are gradually brought into motion. A
rarefaction wave develops and propagates into the depth of the jet,
creating a "sheath" of no uniform density with a differential rotation.

* After this, the rapid expansion processes cease and a pattern
consisting of two regions is established in the jet: a core region that
is uniform in density and rotates rigidly and a “sheath” region with
a no uniform density, rotates differentially, with a converging radial
flow of matter.



Basic equations
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Funnel formation
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Saturation of the vortex

Instability of tangential velocity jump on the compressible
core boundary
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Saturation time & max size of the turbulent transition layer
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