Scalar–Isovector δ-meson in RMF Theory and the Quark Deconfinement Phase Transition in Neutron Stars

G.B.Alaverdyan

Int. Symp. *"The Modern Physics of Compact Stars"* Sept. 17-23, 2008, Yerevan RMF-theory:

σωρ J.D.Walecka, Ann.Phys. 87, 4951, 1974 B.D.Serot, J.D.Walecka, Int.J.Mod.Phys. E6, 515, 1997.

Low density asymmetric nuclear matter:

σωρδ S.*Kubis, M.Kutschera*, Phys. Lett., B399,191,1997. B.Liu, V.Greco, V.Baran, M.Colonna, M.Di Toro, Phys. Rev. C65, 045201, 2002.

Heavy ion collisions at intermediate energies:

 σωρδ
 V.Greco, M.Colonna, M.Di Toro, F.Matera, Phys. Rev. C67, 015203, 2003

 σωρδ
 V.Greco et al., Phys. Lett. B562, 215, 2003.

 T.Gaitanos, M.Colonna, M.Di Toro, H.H.Wolter, Phys.Lett. B595, 209,2004.

Neutron stars without quark deconfinement:

 $\sigma \omega \rho \delta$ B.Liu, H.Guo, M.Di Toro, V.Greco, arXiv Nucl-th/0409014 v2, 2005

Lagrangian density of many-particle system of $p,n.\sigma,\omega,\rho,\delta$

$$\mathcal{L} = \overline{\psi}_{N} \left[\gamma^{\mu} \left(i\partial_{\mu} - g_{\omega} \omega_{\mu}(x) - \frac{1}{2} g_{\rho} \overline{\tau}_{N} \cdot \overline{\rho}_{\mu}(x) \right) - \left(m_{N} - g_{\sigma} \sigma(x) - g_{\delta} \overline{\tau}_{N} \cdot \overline{\delta}(x) \right) \right] \psi_{N} + \frac{1}{2} \left(\partial_{\mu} \sigma(x) \partial^{\mu} \sigma(x) - m_{\sigma}^{2} \sigma(x)^{2} \right) - U(\sigma(x)) + \frac{1}{2} m_{\omega}^{2} \omega^{\mu}(x) \omega_{\mu}(x) - \frac{1}{4} \Omega_{\mu\nu}(x) \Omega^{\mu\nu}(x) + \frac{1}{2} \left(\partial_{\mu} \overline{\delta}(x) \partial^{\mu} \overline{\delta}(x) - m_{\delta}^{2} \overline{\delta}(x)^{2} \right) + \frac{1}{2} m_{\rho}^{2} \overline{\rho}^{\mu}(x) \overline{\rho}_{\mu}(x) - \frac{1}{4} R_{\mu\nu}(x) R^{\mu\nu}(x),$$

$$x = x_{\mu} = (t, x, y, z) \qquad \sigma(x), \ \omega_{\mu}(x), \ \vec{\delta}(x), \ \vec{\rho}_{\mu}(x) \qquad \psi_{N} = \begin{pmatrix} \psi_{p} \\ \psi_{n} \end{pmatrix}$$

Vector

ω

ρ

$U(\sigma) = \frac{b}{3}m_N(g_\sigma\sigma)^3 + \frac{c}{4}(g_\sigma\sigma)^4,$		Scalar
$\Omega_{\mu\nu}(x) = \partial_{\mu}\omega_{\nu}(x) - \partial_{\nu}\omega_{\mu}(x),$	Isoscalar	σ
$\Re_{\mu\nu}(x) = \partial_{\mu}\rho_{\nu}(x) - \partial_{\nu}\rho_{\mu}(x).$	Isovector	δ

Relativistic mean-field approach

$$\frac{\partial \mathcal{L}}{\partial \phi(x)} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi(x))} = 0$$

$$e_{p}(k) = \sqrt{k^{2} + m_{p}^{*2}} + g_{\omega} \overline{\omega}_{0} + \frac{1}{2} g_{\rho} \overline{\rho}_{0}^{(3)},$$

$$e_{n}(k) = \sqrt{k^{2} + m_{n}^{*2}} + g_{\omega} \overline{\omega}_{0} - \frac{1}{2} g_{\rho} \overline{\rho}_{0}^{(3)},$$

$$m_{\sigma}^{2} \overline{\sigma} = g_{\sigma} \left(n_{sp} + n_{sn} - \frac{dU(\overline{\sigma})}{d\overline{\sigma}} \right),$$

$$m_{\omega}^{2} \overline{\omega} = g_{\omega} \left(n_{p} + n_{n} \right),$$

$$m_{\delta}^{2} \overline{\delta}^{(3)} = g_{\delta} \left(n_{sp} - n_{sn} \right),$$

$$m_{\rho}^{2} \overline{\rho}_{0}^{(3)} = \frac{1}{2} g_{\rho} \left(n_{p} - n_{n} \right),$$

$$m_p^* = m_N - g_\sigma \,\overline{\sigma} - g_\delta \,\overline{\delta}^{(3)},$$
$$m_n^* = m_N - g_\sigma \,\overline{\sigma} + g_\delta \,\overline{\delta}^{(3)}.$$

$$n_{p} = \frac{k_{Fp}^{-3}}{3\pi^{2}}, \quad n_{n} = \frac{k_{Fn}^{-3}}{3\pi^{2}},$$
$$n_{sp} = \frac{1}{\pi^{2}} \int_{0}^{k_{Fp}} \frac{m_{p}^{*}}{\sqrt{k^{2} + m_{p}^{*2}}} k^{2} dk,$$

$$n_{sn} = \frac{1}{\pi^2} \int_0^{k_{Fn}} \frac{m_n^*}{\sqrt{k^2 + m_n^{*2}}} k^2 dk .$$

$$\mu_{p} = e_{p}(k_{Fp}) = \sqrt{k_{Fp}^{2} + m_{p}^{*2}} + g_{\omega} \,\overline{\omega}_{0} + \frac{1}{2} g_{\rho} \,\overline{\rho}_{0}^{(3)},$$

$$\mu_{n} = e_{n}(k_{Fn}) = \sqrt{k_{Fn}^{2} + m_{n}^{*2}} + g_{\omega} \,\overline{\omega}_{0} - \frac{1}{2} g_{\rho} \,\overline{\rho}_{0}^{(3)}.$$

Parametric EOS for nuclear matter

$$g_{\sigma}\overline{\sigma} \equiv \sigma, \quad g_{\omega}\overline{\omega}_{0} \equiv \omega, \quad g_{\delta}\delta^{(3)} \equiv \delta, \qquad g_{\rho}\overline{\rho}^{(3)} \equiv \rho,$$

$$\left(\frac{g_{\sigma}}{m_{\sigma}}\right)^{2} \equiv a_{\sigma}, \quad \left(\frac{g_{\omega}}{m_{\omega}}\right)^{2} \equiv a_{\omega}, \quad \left(\frac{g_{\delta}}{m_{\delta}}\right)^{2} \equiv a_{\delta}, \quad \left(\frac{g_{\rho}}{m_{\rho}}\right)^{2} \equiv a_{\rho} \qquad \alpha = \frac{n_{n} - n_{p}}{n}, \text{ the asymmetry parameter}$$

$$P(n,\alpha) = \frac{1}{\pi^2} \int_{0}^{k_F(n)(1-\alpha)^{\frac{1}{3}}} \left(\sqrt{k_F(n)^2 (1-\alpha)^{\frac{2}{3}} + (m_N - \sigma - \delta)^2} - \sqrt{k^2 + (m_N - \sigma - \delta)^2} \right) k^2 dk + \frac{1}{\pi^2} \int_{0}^{k_F(n)(1+\alpha)^{\frac{1}{3}}} \left(\sqrt{k_F(n)^2 (1+\alpha)^{\frac{2}{3}} + (m_N - \sigma + \delta)^2} - \sqrt{k^2 + (m_N - \sigma + \delta)^2} \right) k^2 dk - \tilde{U}(\sigma) + \frac{1}{2} \left(-\frac{\sigma^2}{a_\sigma} + \frac{\omega^2}{a_\omega} - \frac{\delta^2}{a_\delta} + \frac{\rho^2}{a_\rho} \right).$$

$$\varepsilon(n,\alpha) = \frac{1}{\pi^2} \int_{0}^{k_F(n)(1-\alpha)^{\frac{1}{3}}} \sqrt{k^2 + (m_N - \sigma - \delta)^2} k^2 dk + \frac{1}{\pi^2} \int_{0}^{k_F(n)(1+\alpha)^{\frac{1}{3}}} \sqrt{k^2 + (m_N - \sigma + \delta)^2} k^2 dk + \tilde{U}(\sigma) + \frac{1}{2} \left(\frac{\sigma^2}{a_{\sigma}} + \frac{\omega^2}{a_{\omega}} + \frac{\delta^2}{a_{\delta}} + \frac{\rho^2}{a_{\rho}} \right),$$

Parameters of RMF theory

$$a_{\sigma}, a_{\omega}, a_{\delta}, a_{\rho}, b, c$$

Symmetric nuclear matter ($\alpha = 0$)

Saturation density $(n = n_0)$

$$m_N^* = \gamma m_N, \qquad \sigma_0 = (1-\gamma) m_N$$

$$\frac{d\varepsilon(n,\alpha)}{dn}\Big|_{\substack{n=n_0\\\alpha=0}} = \frac{\varepsilon(n_0,0)}{n_0} = m_N + f_0, \qquad f_0 = \frac{B}{A}, \quad \text{Binding energy per baryon}$$

$$a_{\omega} = \frac{1}{n_0} \left(m_N + f_0 - \sqrt{k_F (n_0)^2 + (m_N - \sigma_0)^2} \right)$$

$$\omega_0 = a_{\omega} n_0 = m_N + f_0 - \sqrt{k_F (n_0)^2 + (m_N - \sigma_0)^2}$$

$$\frac{\sigma_0}{a_{\sigma}} = \frac{2}{\pi^2} \int_0^{k_F(n_0)} \frac{(m_N - \sigma_0)}{\sqrt{k^2 + (m_N - \sigma_0)^2}} k^2 dk - bm_N \sigma_0^2 - c\sigma_0^3$$

Parameters of RMF theory

$$\varepsilon_{0} = n_{0}(m_{N} + f_{0}) = \frac{2}{\pi^{2}} \int_{0}^{k_{F}(n_{0})} \sqrt{k^{2} + (m_{N} - \sigma_{0})^{2}} k^{2} dk + \frac{b}{3} m_{N} \sigma_{0}^{3} + \frac{c}{4} \sigma_{0}^{4} + \frac{1}{2} \left(\frac{\sigma_{0}^{2}}{a_{\sigma}} + n_{0}^{2} a_{\omega} \right)$$

$$K = 9 n_0^2 \frac{d^2}{dn^2} \left(\frac{\varepsilon(n,\alpha)}{n} \right) \Big|_{\substack{n=n_0\\\alpha=0}}$$

compressibility module

$$E_{sym}(n) = \frac{1}{2n} \frac{d^2 \varepsilon(n, \alpha)}{d\alpha^2} \bigg|_{\alpha=0}$$

Symmetry energy

$a_{\delta} fm^2$	0	0,5	1	1,5	2	2.5	3
$a_{\rho} fm^2$	4,794	6,569	8,340	10,104	11,865	13,621	15,372

Parameters of RMF theory

Parameters	σωρ	σωρδ
$a_{_{\sigma}}$, fm²	9.154	9.154
$a_{\omega}^{}$, fm²	4.828	4.828
a_δ , fm²	0	2.5
a _ρ , fm²	4.794	13.621
b , fm ⁻¹	1.654 10 ⁻²	1.654 10 ⁻²
С	1.319 10 ⁻²	1.319 10 ⁻²

Properties of asymmetric nuclear matter

Properties of asymmetric nuclear matter

Characteristics of β -equilibrium npe- plasma

$$\varepsilon_{NM}(n,\alpha,\mu_e) = \varepsilon(n,\alpha) + \varepsilon_e(\mu_e),$$

$$P_{NM}(n,\alpha,\mu_e) = P(n,\alpha) + \frac{1}{3\pi^2}\mu_e(\mu_e^2 - m_e^2)^{3/2} - \varepsilon_e(\mu_e)$$

$$q = \frac{n_p - n_e}{n} = \frac{1}{2}(1 - \alpha) - \frac{n_e}{n}$$

Characteristics of charge neutral and β -stable npe- plasma

Symmetry energy

EOS of neutron star matter in nucleonic phase

Parameters of deconfinement phase transition

 $\begin{array}{ll} \mathsf{MFT}\sigma\omega\rho\delta + \mathsf{MIT}\text{-bag} & \alpha_s = 0.5 \ , \ m_u = 5 \ \textit{MeV} \ , \ \ m_d = 7 \ \textit{MeV} \ , \ \ m_d = 150 \ \textit{MeV} \\ \\ \mu_{NM}\left(P_0\right) = \mu_{QM}\left(P_0\right) \end{array}$

Maxwell's construction

B - bag parameter

Parameters of deconfinement phase transition

EOS with quark deconfined phase transition

Neutron stars with quark core

TOV equations

Neutron stars with quark core

 $\lambda > 3/2 \longrightarrow B < 69,3 \text{ MeV/fm}^3$ $\lambda_{cr} = 3/2 \longrightarrow B \approx 69,3 \text{ MeV/fm}^3$ $\lambda \le 3/2 \longrightarrow 69,3 \le B \le 90 \text{ MeV/fm}^3$ $B > 90 \text{ MeV/fm}^3$ Unstable QP

Neutron stars with quark core

Catastrophic conversion due to deconfined phase transition

Catastrophic conversion due to deconfined phase transition

 $M \approx 0.24 M_{\odot}$

$R \approx 16.75 \ km$

 $M_{core} \approx 0.087 \ M_{\odot}$ $R_{core} \approx 4.38 \ km$ $R \approx 13.95 \ km$

- > The account of δ -meson field results in reduction of phase transition parameters, P_0 , n_N , n_O
- The density jamp parameter λ, that has important significance from the point of view of infinitisimal quark core stability in neutron star, is increased.
- In case of bag parameter values B < 69.3 MeV/fm³ the condition λ>3/2 is satisfied, and infinitisimal quark core is unstable.
- > For $B > 90 MeV/fm^3$ the quark phase is unstable.

CUULCHOSOLO THANK YOU