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Superfluid in Newtonian theory
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Superfluid in Genaral Relativity Theory
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Type Il superconductor in

General Relativity Theory
D.M.Sedrakian, R.Krikorian (2007)

Consider a static universe with metric of the form

ds® = gl.jdxidxj + G ( dx4)2 1)

where the g ’s are independent of the time coordinate x* In this universe
we have a type Il superconductor with world lines of the normal part along
the x* lines; consequently

2

u'(n) =0, g44[u4(nﬂ =-1, u4(n)—ﬁ 2)



Type Il superconductor in GRT

As it is well known, when the intensity of the applied magnetic field is less
than the critical value for the creation of quantum vortices, the equations
which relate the supercurrent to the electromagnetic field are the London
equations which, in covariant form, read

V.M, =s, =0 ®

where V is the operator of covariant derivation and

mc
M = |+
v 821’1(5) I, + A (4)

with €( € <0), M and ”( 5) denoting respectively the charge, mass and
number density of superelectrons. J,, is the 4-current defined by

j. =en(s)u, (s) ©

and the 4-potential connected to the electromaanetic field tensor by

F, =d,A —0d,A, (6)



Type Il superconductor in GRT

B |n the presence of vortices, the right-hand side of Eq.(3) must be set equal
to a non zero antisymmetric tensor characterizing the system of vortices.
This tensor may be written in the form

D =—u”(L)v°(L)+u’(L)v" (L) (7)

where u” ( L) and Ve ( L) are respectively the unit 4-velocity of the

vortex and the unit spacelike vector defining the direction of the vortex.

Acrcaordinnls in tha nrecanca nf vinrtirceae Fa (RY miiet he renlareand hy

S
V[,U]\4V] = S,uv — En,uvpaDpG or n,uvpav[pMG] = —ZSD'UV (8)
where
/ 1 1%
U,LthO' - _ggﬂvpgﬁ 52 :Esﬂ S/JV (9)

From Eq.(8) one easily derive the equation of conservation
of vortex number

V,(sD") =0 (10
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GRT
NV M, =-2sD"" ©® V, ( SD”V) =0 (0

Equations (8) and (10) have the following Galilean limits:

1
rotM = ng, x M div(n (L)) =0
§
where ¢0 =s/n=hc/ 26, e and n are respectively the quantized
magnetic flux of a vortex, the unit vector in the direction of the vortex, and the
density of vortices. \';( L) Is the velocity of the vortex, which is

perpendicularto A
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COVARIANT FORMULATION OF THE FORCES
ACTING ON VORTICES

1.Friction force

Friction is a consequence of the interaction between the normal matter in the
core of a vortex and the normal component of the superconductor. By classical
physics analogy we adopt the following covariant expression of the friction force

F, :nn(n)l%)( n,L) 1) o, L) :[5§‘+up(L)u“(Lﬂ u,(n) (12)

where 1}, n( n) and L%o( n, L) are respectively the friction coefficient, the
number density of the normal component, and the velocity of the normal comonent
relative to the vortex.

Taking into account the orthogonality of U’ ( L) and V° (L) , and introducing
projection tensor

19=67-n5, n; :—up(L)u"(L) +vp(L)v"(L)

we finally obtain for the friction force the following expression

F,=nn(n) L u’(n) @

lo)
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COVARIANT FORMULATION OF THE FORCES
ACTING ON VORTICES

2.Lorenz force

The second force |, acting on a quantum vortex is due to the
superconducting current. By analogy with the classical case, IS taken
proportional to the velocity of the superconducting component relative to the
vortex, i.e. l%o( S,L) . Moreover, preing orthogonal to the relative velocity

1%)( S,L) , the velocity of vortex up(L) . and the vortex direction Vp(L) :

' en(s) 149 1 .0
F, = e Snpuval%(S’L)D :EJ (S)Spa (14)
Galilean limit
sznn(”) J‘pa uo-(n) Fl'fr:—n\l;(L)
— 1 ' en(s|@ rr r
F,==j%(s)s,, F; = 5 | (5)_V(L):Ja
C C
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DETERMINATION OF THE VORTEX 4-VELOCITY

The 4-velocity of vortices can be obtained from the condition

- 1 .0 o
F +F,=0 = J (s) s, =nn(n) L, u®(n) @s)

jp(s) :en(s) 7(5) :kp+Q(s)mp] (16)

u’(n) =y(n)k” (17)
1 kPs,,m" Qs k? L, m* K°Q(s)
—— .= > (18) — —=— = (19)
sm” 1L, m" 1+k m” L, m I+x

= en( 5) 7/( S) S One easily verifies that the left-hand side of Egs.
cn ”( n) (18) and (19) correspond respectively to the radial

and azimuthal components of the 4-vector U” ( L)
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DETERMINATION OF THE VORTEX 4-VELOCITY

(i) the presence of vortices does not modify the static gravitational field

(i) The homogeneous applied magnetic field is directed along the

3 . .
X - coordinate axis

Substitution of the tensor components
m” L, m° =g, +1,, =3, |:1+u2 (L) u,| LH
m” Lo k® =—1,, = g22u2(L) u, (L)

ks, ,m’ =s\—gu' (L)

in Egs. (18) and (19) vields

ul(L)=—9223g/C1+KK2[1+u2(L)u2(LH
u2(p) =~ 28] & 1rwr(L)u, (L) (20)
c 1+x° u, (L)

normalization condition
u*(L)u, (L) +u*(L)u,(L)+u'(L)u, (L) =~1 (21)
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RELAXATION EQUATION
M, :_Sﬁuw
0x \/ng

The equation of conservation of vortex number

84 s N9 u4(L))—:—il| sN_9 ul()i (23)
ox Iu ] 9 °
From (22) and (23) we obtain

OM, —sN—9 (1) (22)

— S
ox* i1

(22)




RELAXATION EQUATION
Eg. (24) may be exhibited in the form
. . 2
%+£:_en(s) oA, (25)
oT 7 mc> oT

where the relaxation time T is defined by
1 e « 1+u’(L)u, (L)
T 2mc 1+K2 \/_944 \/911u4(5)

P \V Y11 1 oM , (27)
—g u (L) o

(26)

As we see, the quantity S depends on j2 , consequently, the relaxation
equation (25) is a nonlinear equation with respectto J,.



RELAXATION EQUATION
, 1

Condition (28) states that the relaxation current is much smaller than the Meissner
current. When the nonequilibrium vortex tends to equilibrium, the relaxation
current J> tends to zero; accordingly, the last stage of the relaxation process
may be regarded as linear. Linearity of the process is conserved, when the
change in the applied magnetic field AJH is small compared to the magnetic

field H.

In the case of equilibrium the quantity S reads

vV 911 1 0A, 29) B®=-— 1 04, (30)
- 1
\/_944u4(L) 7Y ox \/; ox

Sy = —




RELAXATION TIME
The final expression for the relaxation time
I B x L+ (L) u, L)

1 : | . — 1=1,2 (32)
%o melHK Ty (L)u (L] 1+u'(s)u,(b) |

In the case of small velocities Lli ( L) u ( L) <<1] ui ( S) u. ( S) <<1

the nonrelativistic expression of TO reads

1 eB Kk
— = > (33)
T, mcl+k




" S
Let us now find a solution of the relaxation equation when the value of the
magnetic field undergoes a discrete jump from the value Ho

to H, (H,-H,)/H,<<1

B:H(I) aj2+j2:j
r AH<<1 " 0 d .
H where  j=-— 12 A, aH
AmA° OH H, dT
|
| |
N
| )
Hc1H0H1 H
m——— 1 oA,
: 1 ](a))e ' (o) =J=- H -H
Jo =7 —dw ile 47mA* oH (H,-H,)
27l ! w-1i/7, Hy
T/t
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