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Superfluid in Genaral Relativity Theory
D.M.Sedrakian, B.Carter, D.Langlois    

(1998) 
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Superconductor in Newtonian 
theory

D.M.Sedrakian (2006)
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Type II superconductor in 
General Relativity Theory

D.M.Sedrakian, R.Krikorian  (2007)

Consider a static universe with metric of the form

where the      ’s are independent of the time coordinate      . In this universe 
we have a type II superconductor with world lines of the normal part along 
the         lines; consequently
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Type II superconductor in GRT
As it is well known, when the intensity of the applied magnetic field is less 
than the critical value  for the creation of quantum vortices, the equations 
which relate the supercurrent to the electromagnetic field are the London 
equations which, in covariant form, read

(3)

where  is the operator of covariant derivation and▽

(4)

with      (     <0),      and            denoting respectively the charge, mass and 
number density of superelectrons.       is the 4-current defined by

(5)

and  the 4-potential connected to the electromagnetic field tensor by

(6)

[ ] 0M s    

 2

mc
M j A

e n s   

e e m  n s
j
   j en s u s 

F A A       



  

Type II superconductor in GRT
 In the presence of vortices, the right-hand side of Eq.(3) must be set equal 

to a non zero antisymmetric tensor characterizing the system of vortices. 
This tensor may be written in the form

where               and                are respectively the unit 4-velocity of the 

vortex and the unit spacelike vector defining the direction of the vortex.
Accordingly, in the presence of vortices Eq.(3) must be replaced by 

       D u L v L u L v L       (7)

 u L  v L
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From Eq.(8) one easily derive the equation of conservation 
of vortex number

(10)



  

Type II superconductor in 
GRT
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Equations (8) and (10) have the following Galilean limits:
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n
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where            are respectively the quantized 

magnetic flux of a vortex, the unit vector in the direction of the vortex, and the 

density of vortices. is the velocity of the vortex, which is 

perpendicular to     .
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COVARIANT FORMULATION OF THE FORCES 
ACTING ON VORTICES

1.Friction force
Friction is a consequence of the interaction between the normal matter in the 
core of a vortex and the normal component of the superconductor. By classical 
physics analogy we adopt the following covariant expression of the friction force

   ,F n n u n L  % (11)        ,u n L u L u L u n 
      % (12)

where     and      are respectively the friction coefficient, the 
number density of the normal component, and the velocity of the normal comonent 
relative to the vortex.

 ,  n n  ,u n L%

Taking into account the orthogonality of        and                , and introducing 
projection tensor 

 u L  v L

       ,    u L u L v L v L     
            

we finally obtain for the friction force the following expression

   F n n u n
   (13)



  

COVARIANT FORMULATION OF THE FORCES 
ACTING ON VORTICES

   F n n u n
  

2.Lorenz force

The second force          , acting on a quantum vortex is due to the 
superconducting current. By analogy with the classical case,      is taken 
proportional to the velocity of the superconducting component relative to the 
vortex, i.e.      . Moreover,         being orthogonal to the relative velocity 

 , the velocity of vortex     , and the vortex direction            :
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Galilean limit
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DETERMINATION OF THE VORTEX 4-VELOCITY
The 4-velocity of vortices can be obtained from the condition 
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 One easily verifies that the left-hand side of Eqs. 

(18) and (19) correspond respectively to the radial 

and azimuthal components of the 4-vector  u L



  

DETERMINATION OF THE VORTEX 4-VELOCITY
(i) the presence of vortices does not modify the static gravitational field

(ii) The homogeneous applied magnetic field is directed along the 

     - coordinate axis
3x

Substitution of the tensor components 
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in Eqs. (18) and (19) yields
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RELAXATION EQUATION
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The equation of conservation of vortex number
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From (22) and (23) we obtain
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RELAXATION EQUATION
Eq. (24) may be exhibited in the form
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where the relaxation time     is defined by
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As we see, the quantity      depends on      , consequently, the relaxation 
equation (25) is a nonlinear equation with respect to      .

s 2j
2j



  

RELAXATION EQUATION
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Condition (28) states that the relaxation current is much smaller than the Meissner 
current. When the nonequilibrium vortex tends to equilibrium, the relaxation 
current        tends to zero; accordingly, the last stage of the relaxation process 
may be regarded as linear. Linearity of the process is conserved, when the 
change in the applied magnetic field              is small compared to the magnetic 
field      .

In the case of equilibrium the quantity        reads
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RELAXATION TIME
The final expression for the relaxation time
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In the case of small velocities        1,    1i i
i iu L u L u s u s 

the nonrelativistic expression of        reads0
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Let us now find a solution of the relaxation equation when the value of the 
magnetic field undergoes a discrete jump from the value        

to         
0H
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