(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (2)

 <

Superfluid Properties of Neutron Star Crust

Jérôme MARGUERON

Institut de Physique Nucléaire et Université Paris-Sud, Orsay, France

The Modern Physics of Compact Stars

Yerevan, September 17-24, 2008

Why the crust is important ?

Cf. previous talks...

(日) (日) (日) (日) (日) (日) (日) (日)

Crust = interface between the core and the observed surface.

Some observations:

- rotation and spin jumps: Glitches (vortex pinning) ,
- surface temperature: cooling, thermal relaxation of LMXRT (specific heat) ,
- flares: crust shear modes, ...

Superfluidity of the unbound neutrons might play an important role.

Specific heat in the inner crust

inner crust = nuclear clusters (lattice) + unbound neutrons + electrons

POWERED BY LATEX

・ロット (雪) (日) (日)

In neutron matter:

In symmetric matter??

and its isospin dependence?

Microscopic treatment based on the realistic N-N interaction. Cao, Lombardo, Schuck, PRC 74, 064301 (2006)

Bare + medium polarization:

- reference calculation including only the bare NN interaction (bare),
- additional contribution from medium polarization effects (screened).

Medium polarization effects:

- In symmetric matter: shift the peak to lower densities.
- In neutron matter: reduction of the peak (/2).

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Э

Levenfish & Yakovlev, Astron. Rep. 38 (1994) 247:

$$\mathcal{R}_V^{\mathrm{sf}}(T,\Delta) \approx \mathcal{R}(T/T_c) \times \mathcal{C}_V^{\mathrm{normal}}(T).$$
 (1)

• $R \rightarrow$ superfluid effects ,

0

$$R \propto \exp{-(T_c/T)^2} \tag{2}$$

 c_V^{normal} → density of states effects. (boundary conditions, discretization of the continuum, ...).

$$c_V^{\text{normal}} \propto T$$
 (3)

(日) (日) (日) (日) (日) (日) (日) (日)

What are the effects due to the nuclear clusters (lattice)?

$\Delta \neq 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The crust of neutron stars

Lindemann melting criterion: mean fluctuation of ions should be small compared with average ion spacing (r_z) . Then matter is solid if

$$T < T_m pprox Z^2 e^2 / 100 r_z$$

For ⁵⁶Fe, solid if
$$\rho > 10^7$$
 g/cm⁻³.

Consequences: **Crust**: Coulomb lattice made of nuclear clusters. **Inner crust**: lattice + unbound neutrons ($\rho > \rho_{drip}$).

 \rightarrow Proper description: band theory. Wigner-Seitz approximation (in most practical calculations).

Effects of the lattice

 $\Delta = \mathbf{0}$

Band theory

Hamiltonian:

$$h_0^{(q)} \equiv -\nabla \cdot \frac{\hbar^2}{2m_q^{\oplus}(\mathbf{r})} \nabla + U_q(\mathbf{r}) - \mathrm{i} \mathbf{W}_{\mathbf{q}}(\mathbf{r}) \cdot \nabla \times \boldsymbol{\sigma} , \qquad (4)$$

Band theory: Periodic potential: define an irreducible cell. Floquet-Bloch theorem,

$$\varphi_{\alpha \boldsymbol{k}}(\boldsymbol{r}) = \boldsymbol{u}_{\alpha \boldsymbol{k}}(\boldsymbol{r}) \boldsymbol{e}^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}}, \quad (5)$$

 $u_{\alpha k}(\mathbf{r})$ have the full periodicity of the lattice. α is discrete, **k** is continuous. Satisfy the boundary conditions:

$$\varphi_{\alpha \boldsymbol{k}}^{(q)}(\boldsymbol{r}+\boldsymbol{T}) = \boldsymbol{e}^{i\boldsymbol{k}\cdot\boldsymbol{T}}\varphi_{\alpha \boldsymbol{k}}^{(q)}(\boldsymbol{r}), \quad (6)$$

Schroedinger eq.:

$$h_0^{(q)}\varphi_{\alpha\boldsymbol{k}}^{(q)}(\boldsymbol{r}) = \varepsilon_{\alpha\boldsymbol{k}}^{(q)}\varphi_{\alpha\boldsymbol{k}}^{(q)}(\boldsymbol{r}) \qquad (7)$$

Equation for $u_{\alpha k}^{(q)}(\mathbf{r})$:

$$(h_0^{(q)} + h_k^{(q)})u_{\alpha k}^{(q)}(\mathbf{r}) = \varepsilon_{\alpha k}^{(q)} u_{\alpha k}^{(q)}(\mathbf{r})$$
(8)

with

$$h_{k}^{(q)} \equiv \frac{\hbar^{2}k^{2}}{2m_{q}^{\oplus}(\mathbf{r})} + \mathbf{v}_{\mathbf{q}} \cdot \hbar \mathbf{k} , (9)$$
$$\mathbf{v}_{\mathbf{q}} \equiv \frac{1}{i\hbar}[\mathbf{r}, h_{0}^{(q)}] \cdot (10)_{\text{powered by latter}}$$

Band theory

Hamiltonian:

$$h_0^{(q)} \equiv -\nabla \cdot \frac{\hbar^2}{2m_q^{\oplus}(\mathbf{r})} \nabla + U_q(\mathbf{r}) - \mathrm{i} \mathbf{W}_{\mathbf{q}}(\mathbf{r}) \cdot \nabla \times \boldsymbol{\sigma} , \qquad (4)$$

Band theory: Periodic potential: define an irreducible cell. Floquet-Bloch theorem,

$$\varphi_{\alpha \mathbf{k}}(\mathbf{r}) = \mathbf{u}_{\alpha \mathbf{k}}(\mathbf{r}) \mathbf{e}^{\mathbf{i}\mathbf{k}\cdot\mathbf{r}},$$
 (5)

 $u_{\alpha \mathbf{k}}(\mathbf{r})$ have the full periodicity of the lattice.

 α is discrete, **k** is continuous. Satisfy the boundary condi-

tions:

$$\varphi_{\alpha \boldsymbol{k}}^{(q)}(\boldsymbol{r}+\boldsymbol{T}) = \boldsymbol{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{T}}\varphi_{\alpha \boldsymbol{k}}^{(q)}(\boldsymbol{r}), \$$
(6)

Schroedinger eq.:

$$h_0^{(q)}\varphi_{\alpha\boldsymbol{k}}^{(q)}(\boldsymbol{r}) = \varepsilon_{\alpha\boldsymbol{k}}^{(q)}\varphi_{\alpha\boldsymbol{k}}^{(q)}(\boldsymbol{r}) \qquad (7)$$

Equation for
$$u_{\alpha k}^{(q)}(\mathbf{r})$$
:

$$(h_0^{(q)} + h_k^{(q)})u_{\alpha k}^{(q)}(\mathbf{r}) = \varepsilon_{\alpha k}^{(q)} u_{\alpha k}^{(q)}(\mathbf{r})$$
(8)

with

$$h_{k}^{(q)} \equiv \frac{\hbar^{2}k^{2}}{2m_{q}^{\oplus}(\mathbf{r})} + \mathbf{v}_{\mathbf{q}} \cdot \hbar \mathbf{k} , (9)$$
$$\mathbf{v}_{\mathbf{q}} \equiv \frac{1}{i\hbar} [\mathbf{r}, h_{0}^{(q)}] . \qquad (10)$$

Band theory

Hamiltonian:

$$h_0^{(q)} \equiv -\nabla \cdot \frac{\hbar^2}{2m_q^{\oplus}(\mathbf{r})} \nabla + U_q(\mathbf{r}) - \mathrm{i} \mathbf{W}_{\mathbf{q}}(\mathbf{r}) \cdot \nabla \times \boldsymbol{\sigma} , \qquad (4)$$

Band theory:

Periodic potential: define an irreducible cell. Floquet-Bloch theorem,

$$\varphi_{\alpha \boldsymbol{k}}(\boldsymbol{r}) = \boldsymbol{u}_{\alpha \boldsymbol{k}}(\boldsymbol{r}) \boldsymbol{e}^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}} \,, \qquad$$
 (5)

 $u_{\alpha \mathbf{k}}(\mathbf{r})$ have the full periodicity of the lattice.

 α is discrete, **k** is continuous. Satisfy the boundary conditions:

$$\varphi_{\alpha \boldsymbol{k}}^{(q)}(\boldsymbol{r}+\boldsymbol{T}) = \boldsymbol{e}^{\mathbf{i}\boldsymbol{k}\cdot\boldsymbol{T}}\varphi_{\alpha \boldsymbol{k}}^{(q)}(\boldsymbol{r}), \$$
(6)

Schroedinger eq.:

$$h_0^{(q)}\varphi_{\alpha\boldsymbol{k}}^{(q)}(\boldsymbol{r}) = \varepsilon_{\alpha\boldsymbol{k}}^{(q)}\varphi_{\alpha\boldsymbol{k}}^{(q)}(\boldsymbol{r}) \qquad (7)$$

Equation for $u_{\alpha \mathbf{k}}^{(q)}(\mathbf{r})$:

$$(h_0^{(q)} + h_{\boldsymbol{k}}^{(q)})u_{\alpha\boldsymbol{k}}^{(q)}(\boldsymbol{r}) = \varepsilon_{\alpha\boldsymbol{k}}^{(q)} u_{\alpha\boldsymbol{k}}^{(q)}(\boldsymbol{r})$$
(8)

with

$$h_{\boldsymbol{k}}^{(q)} \equiv \frac{\hbar^2 k^2}{2m_q^{\oplus}(\boldsymbol{r})} + \boldsymbol{v}_{\boldsymbol{q}} \cdot \hbar \boldsymbol{k} , (9)$$
$$\boldsymbol{v}_{\boldsymbol{q}} \equiv \frac{1}{i\hbar} [\boldsymbol{r}, h_0^{(q)}] . \qquad (10)_{\text{BY LATES}}$$

Comparison between band theory and WS approximation

Band theory:

unit cell depends on the geometry of the lattice Floquet-Bloch theorem,

$$\varphi_{lpha \mathbf{k}}(\mathbf{r}) = u_{lpha \mathbf{k}}(\mathbf{r}) \mathbf{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} \,,$$

Equation for $u_{\alpha \mathbf{k}}^{(q)}(\mathbf{r})$:

$$(h_0^{(q)}+h_{\boldsymbol{k}}^{(q)})u_{\alpha\boldsymbol{k}}^{(q)}(\boldsymbol{r})=arepsilon_{\alpha\boldsymbol{k}}^{(q)}u_{\alpha\boldsymbol{k}}^{(q)}(\boldsymbol{r})$$

WS approximations:

- spherical unit cell
- Dirichlet / Neumann boundary conditions

•
$$h_{k}^{(q)} = 0$$

Comparison band theory/WS: Self-consistent HF+WS \rightarrow potential \rightarrow band theory (1 iteration).

N. Chamel et al., PRC 75, 055806 (2007)

Comparison between band theory and WS approximation From Negele-Vautherin: ²⁰⁰Zr (40 protons, 90 bound neutrons and 70 unbound neutrons).

Comparison of the densities:

Comparison between band theory and WS approximation Single particle spectrum of the unbound neutrons

Integrated density of states (unbound neutrons)

WS approximation:

ightarrow Shell effects \sim 100 keV

(日)

Preliminary conclusions

WS approximation is justified if

- Static properties: T > 100 keV,
- Dynamical processes: typical energy > 100 keV. neutrino scattering, ...

N. Chamel, S. Naimi, E. Khan, J.M., PRC 75, 055806 (2007)

$$c_{V}(T) = \frac{\partial U}{\partial T}\Big|_{V} = T \frac{\partial S}{\partial T}\Big|_{V}, \qquad (11)$$

$$S = -\sum_{\alpha} \int \frac{\mathrm{d}^{3} \boldsymbol{k}}{(2\pi^{3})} \left[f_{\alpha \boldsymbol{k}} \ln f_{\alpha \boldsymbol{k}} + (1 - f_{\alpha \boldsymbol{k}}) \ln(1 - f_{\alpha \boldsymbol{k}}) \right]$$
(12)

We consider the 3 first layers of Negele & Vautherin:

ho [g.cm ⁻³]	Ζ	Ν	R _{cell} [fm]	$ ho_n^{ m G}~{ m [fm^{-3}]}$	m_n^\star/m_n	ξF
$6.69 imes 10^{11}$	40	160	49.24	$1.3 \ 10^{-4}$	4.0	0.44
1.00×10^{12}	40	210	46.33	2.6 10 ⁻⁴	3.6	0.49
1.47×10^{12}	40	280	44.30	$4.9 \ 10^{-4}$	3.2	0.52

POWERED BY LATEX

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

What do we expect?

Lattice shall be important if $\lambda_F = 2\pi/k_F \sim$ lattice spacing. λ_F =40, 32, 26 fm.

 \rightarrow unbound neutrons shall be strongly scattered through the lattice

Effective mass for 1 electron in a solid:

$$\frac{1}{m_e^{\star}}\Big|_{ij} = \frac{1}{\hbar^2} \frac{\partial^2 \varepsilon_{\alpha \mathbf{k}}^{(e)}}{\partial k_i \partial k_j}$$
(13)

Average effective massfor the unbounds neutrons:

$$m_n^{\star} = \rho_n^G / \mathcal{K} \,, \qquad \mathcal{K} = \frac{1}{3} \sum_{\alpha, i} \int_{\mathrm{F}} \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3} \, \frac{1}{\hbar^2} \frac{\partial^2 \varepsilon_{\alpha \mathbf{k}}}{\partial \mathbf{k}_i \partial \mathbf{k}_i} \,, \tag{14}$$

Deformation of the Fermi surface:

$$S_{\rm F} = \xi_{\rm F} 4\pi k_{\rm F}^2$$
 (15)

(日)

Entropy for the unbound neutrons in the crust

Figure: Entropy per unit volume calculated with the band theory (solid thick line) and with the Wigner-Seitz approximation (dashed line) for the three layers with N = 160 (squares), N = 210 (circles) and N = 280 (diamonds).

Results for N=160

POWERED BY LATEX

(日) (四) (三) (三) (三)

Various approximations:

Fermi gas:

$$c_V^{\rm FG}(T) = \left(\frac{\pi}{3}\right)^{2/3} \frac{m_n^{\oplus} T}{\hbar^2} \left(\rho_n^{\rm G}\right)^{1/3} ,$$
 (16)

Semi-classical Extended-Thomas-Fermi

$$\boldsymbol{c}_{V}^{\mathrm{TF}}(T) = \left(\frac{\pi}{3}\right)^{2/3} \frac{T}{\hbar^{2}} \int \frac{\mathrm{d}^{3}\boldsymbol{r}}{V_{\mathrm{cell}}} m_{n}^{\oplus}(\boldsymbol{r}) \rho_{n}(\boldsymbol{r})^{1/3} \,. \tag{17}$$

Wigner-Seitz:

$$c_V^{\rm WS} = T \frac{\partial S^{\rm WS}}{\partial T} \Big|_V.$$
 (18)

De Gennes (neglecting $\varepsilon(T)$ and $\mu(T)$):

$$c_V^{\rm DG}(T) = \frac{1}{V_{\rm cell}} \sum_{\alpha} g_{\alpha} f_{\alpha} (1 - f_{\alpha}) \left(\frac{\varepsilon_{\alpha} - \mu_n}{T}\right)^2.$$
(19)

POWERED BY LATEX

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Results for N=210

powered by LAT_EX シーマー ション・ション

◆□ > ◆□ > ◆豆 > ◆豆 >

Results for N=280

powered by LAT_EX ミト ミークへへ

◆□ > ◆□ > ◆豆 > ◆豆 >

Are neutrons "Free"?

Group velocity of the unbound neutrons: $v_{\alpha k} = \hbar^{-1} \nabla_k \varepsilon_{\alpha k}$. Effective mass:

$$\mathcal{K} = \frac{1}{3(2\pi)^3\hbar} \sum_{\alpha} \oint_{\mathcal{S}_{\mathrm{F}}} |\boldsymbol{v}_{\alpha\boldsymbol{k}}| \mathrm{d}\mathcal{S} \,. \tag{20}$$

Consequence: $\mathbf{v}_{\alpha \mathbf{k}} \rightarrow \mathbf{v}_{\alpha \mathbf{k}}/2$ due to the lattice.

Specific heat:

$$c_V(T) \simeq rac{\pi^2}{3} g(arepsilon_{
m F}) T$$
 (21)

Density of states:

$$g(\varepsilon_{\rm F}) = \frac{1}{(2\pi)^3 \hbar} \sum_{\alpha} \oint_{\mathcal{S}_{\rm F}} \frac{d\mathcal{S}}{|\boldsymbol{v}_{\alpha \boldsymbol{k}}|} \,. \tag{22}$$

 \rightarrow Cancellation effect.

POWERED BY LATEX

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

summary

Unbound neutrons in the shallow layers of the inner crust are strongly scattered by the lattice, but due to cancellation effect, the specific is very similar to that of a free Fermi gas.

N. Chamel, J. M., E. Khan, submitted

$\Delta \neq 0$

BCS-BEC crossover

POWERED BY LAT_EX <□ > < 클 > < 클 > ミ ∽ ۹ ⊙ ۹ ⊙

BCS-BEC crossover in cold atomic gas

Magnetic Feshbach resonance Interaction characterized by swave scattering length:

a > 0 repulsion, a < 0 attraction, large |a| strong interaction.

- BEC state of diatomic molecules (a >0) condensation in the ground state narrow in r, large in E.
- BCS-BEC crossover region Generalized "Cooper pairs" Unitary limit: 1/k_Fa → 0
- BCS state of cooper pairs (a <0) pairing in momentum space near the Fermi energy narrow in *E*, large in *r*.

J.R. Engelbrecht, et al., PRB 55, 15153 (1997)
M. Matsuo, PRC 73, 044309 (2006)

$(k_{Fn}a_{nn})^{-1}$	$P(d_n)$	ξ_{rms}/d_n	Δ_n/ϵ_{Fn}	ν_n/ϵ_{Fn}	
—1	0.81	1.10	0.21	0.97	BCS boundary
0	0.99	0.36	0.69	0.60	unitarity limit
1	1.00	0.19	1.33	-0.77	BEC boundary

(日)

Adjustment of a simple pairing interaction

Reproduces the scattering length and the Pairing gap in uniform matter obtained from microscopic treatment based on the realistic N-N interaction.

self-consistent calculations of nuclear matter and nuclei.

Result of the adjustment:

Neutron Fermi momentum k_{Fn} : $\rho_n \equiv k_{Fn}^3/3\pi^2$.

POWERED BY LATEX

(日) (四) (三) (三) (三)

$$\Psi_{\text{pair}}(k) = C \, u_k \, v_k \tag{23}$$

Occupation probabilities $n_n(k)$ and chemical potential ν_n

Properties of the probability P(r)

$$P(r) = \int_0^r dr' r'^2 |\Psi_{\text{pair}}(r')|^2$$
(25)

powered by LAT_EX ■ ▶ ■ ∽QQ

Spatial correlations

POWERED BY LATEX

BCS-BEC phase-diagram and pairing interactions

(日) (日) (日) (日) (日) (日) (日) (日)

Summary

- New effective pairing interaction which reproduces microscopic pairing gaps in symmetric and neutron matter.
- Medium polarization effects:
 - \rightarrow reduction of the bare gap in neutron matter,

 \rightarrow strong attraction (quasi-BEC state) in low density symmetric matter.

Consequences: Strong correlations \rightarrow modification of the EoS What about constraints in nuclei ?

J. M., H. Sagawa, K. Hagino, Phys. Rev. C 76, 064316 (2007)

Neutron pairs in semi-magic nuclei

Binding energies

Two neutrons separation energies

Pairing gaps

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

General Conclusions

Unbound neutrons in the crust has very interesting properties:

- scattered by the lattice
- specific heat close to that of a Fermi gas
- BCS-BEC crossover triggered by the density

We set up a treatment of the pairing which could be used in nuclear matter and in nuclei.

 \rightarrow Comparison with nuclei might provide constraints to the models. In the futur, expect more microscopic calculations in symmetric matter.

Outlooks

Developpement of a Band theory including pairing.

Continue the link pairing in matter and in nuclei (inclusion of Coulomb repulsion between protons, of the particle-vibration coupling, ...)

POWERED BY LAT_EX ▲□▶▲쿱▶▲클▶ 볼 ∽੧<은