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Jérôme MARGUERON
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Why the crust is important ?

Cf. previous talks...

Crust = interface between the core and the observed surface.

Some observations:

• rotation and spin jumps: Glitches (vortex pinning) ,

• surface temperature: cooling, thermal relaxation of LMXRT
(specific heat) ,

• flares: crust shear modes, ...

Superfluidity of the unbound neutrons might play an important role.
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Specific heat in the inner crust

inner crust = nuclear clusters (lattice) + unbound neutrons + electrons
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Do we know the density dependence of the pairing gap?

In neutron matter:

In symmetric matter??
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and its isospin dependence?

Microscopic treatment based on the realistic N-N interaction.
Cao, Lombardo, Schuck, PRC 74, 064301 (2006)

Bare + medium polarization:

• reference calculation
including only the bare NN
interaction (bare),

• additional contribution from
medium polarization effects
(screened).
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Medium polarization effects:

• In symmetric matter: shift the
peak to lower densities.

• In neutron matter: reduction
of the peak (/2).
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How does the gap influence the specific heat ?

Levenfish & Yakovlev, Astron. Rep. 38 (1994) 247:

csf
V (T , ∆) ≈ R(T/Tc) × cnormal

V (T ). (1)

• R → superfluid effects ,

R ∝ exp−(Tc/T )2 (2)

• cnormal
V → density of states effects.

(boundary conditions, discretization of the continuum, ...).

cnormal
V ∝ T (3)

What are the effects due to the nuclear clusters (lattice)?
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The crust of neutron stars

Lindemann melting criterion : mean fluctuation of ions should be
small compared with average ion spacing (rz).
Then matter is solid if

T < Tm ≈ Z 2e2/100rz

.
For 56Fe, solid if ρ > 107 g/cm−3.

Consequences:
Crust : Coulomb lattice made of nuclear clusters.
Inner crust : lattice + unbound neutrons (ρ > ρdrip).

→ Proper description: band theory.
Wigner-Seitz approximation (in most practical calculations).
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Effects of the lattice

∆ = 0
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Band theory
Hamiltonian:

h(q)
0 ≡ −∇∇∇ ·

~
2

2m⊕
q (rrr)

∇∇∇ + Uq(rrr) − iWqWqWq(rrr) · ∇∇∇× σσσ , (4)

Band theory:
Periodic potential: define an ir-
reducible cell.
Floquet-Bloch theorem,

ϕαkkk (rrr) = uαkkk (rrr )eikkk ·rrr , (5)

uαkkk (rrr) have the full periodicity
of the lattice.
α is discrete, kkk is continuous.
Satisfy the boundary condi-
tions:

ϕ
(q)
αkkk (rrr + TTT ) = eikkk ·TTT ϕ

(q)
αkkk (rrr) , (6)

Schroedinger eq.:

h(q)
0 ϕ

(q)
αkkk (rrr) = ε

(q)
αkkk ϕ

(q)
αkkk (rrr ) (7)

Equation for u(q)
αkkk (rrr ):

(h(q)
0 + h(q)

kkk )u(q)
αkkk (rrr) = ε

(q)
αkkk u(q)

αkkk (rrr)
(8)

with

h(q)
kkk ≡

~
2k2

2m⊕
q (rrr )

+ vqvqvq · ~kkk ,(9)

vqvqvq ≡
1
i~

[rrr , h(q)
0 ] . (10)
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Comparison between band theory and WS approximation

Band theory:
unit cell depends on the geom-
etry of the lattice
Floquet-Bloch theorem,

ϕαkkk (rrr) = uαkkk (rrr)eikkk ·rrr ,

Equation for u(q)
αkkk (rrr):

(h(q)
0 +h(q)

kkk )u(q)
αkkk (rrr ) = ε

(q)
αkkk u(q)

αkkk (rrr)
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WS approximations:

• spherical unit cell

• Dirichlet / Neumann boundary
conditions

• h(q)
kkk = 0

Comparison band theory/WS:
Self-consistent HF+WS → poten-
tial → band theory (1 iteration).

N. Chamel et al., PRC 75,
055806 (2007)
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Comparison between band theory and WS approximation
From Negele-Vautherin: 200Zr (40 protons, 90 bound neutrons and 70
unbound neutrons).

Comparison of the densities:

Bound neutron density
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Comparison between band theory and WS approximation
Single particle spectrum of the unbound neutrons

Density of states (unbound
neutrons)
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Preliminary conclusions

WS approximation is justified if

• Static properties: T > 100 keV,

• Dynamical processes: typical energy > 100 keV.
neutrino scattering, ...

N. Chamel, S. Naimi, E. Khan, J.M., PRC 75, 055806
(2007)
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Application: specific heat (normal state)

cV (T ) =
∂U
∂T

∣

∣

∣

∣

V
= T

∂S
∂T

∣

∣

∣

∣

V
, (11)

S = −
∑

α

∫

d3kkk
(2π3)

[

fαkkk ln fαkkk + (1 − fαkkk ) ln(1 − fαkkk )

]

(12)

We consider the 3 first layers of Negele & Vautherin:

ρ [g.cm−3] Z N Rcell [fm] ρG
n [fm−3] m⋆

n/mn ξF

6.69 × 1011 40 160 49.24 1.3 10−4 4.0 0.44

1.00 × 1012 40 210 46.33 2.6 10−4 3.6 0.49

1.47 × 1012 40 280 44.30 4.9 10−4 3.2 0.52
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What do we expect?
Lattice shall be important if λF = 2π/kF ∼ lattice spacing.
λF =40, 32, 26 fm.
→ unbound neutrons shall be strongly scattered through the lattice

Effective mass for 1 electron in a solid:

1
m⋆

e

∣

∣

∣

∣

ij
=

1
~2

∂2ε
(e)
αkkk

∂ki∂kj
(13)

Average effective massfor the unbounds neutrons:

m⋆
n = ρG

n /K , K =
1
3

∑

α,i

∫

F

d3kkk
(2π)3

1
~2

∂2εαkkk

∂ki∂ki
, (14)

Deformation of the Fermi surface:

SF = ξF4πk2
F (15)
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Entropy for the unbound neutrons in the crust
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Figure: Entropy per unit volume calculated with the band theory (solid thick
line) and with the Wigner-Seitz approximation (dashed line) for the three
layers with N = 160 (squares), N = 210 (circles) and N = 280 (diamonds).
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Results for N=160
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Various approximations:

Fermi gas:

cFG
V (T ) =

(π

3

)2/3 m⊕
n T
~2

(

ρG
n

)1/3
, (16)

Semi-classical Extended-Thomas-Fermi

cTF
V (T ) =

(π

3

)2/3 T
~2

∫

d3rrr
Vcell

m⊕
n (rrr)ρn(rrr)1/3 . (17)

Wigner-Seitz:

cWS
V = T

∂SWS

∂T

∣

∣

∣

∣

V
. (18)

De Gennes (neglecting ε(T ) and µ(T )):

cDG
V (T ) =

1
Vcell

∑

α

gαfα(1 − fα)

(

εα − µn

T

)2

. (19)
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Results for N=210
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Results for N=280
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Are neutrons ”Free”?

Group velocity of the unbound neutrons : vvvαkkk = ~
−1∇kkkεαkkk .

Effective mass :

K =
1

3(2π)3~

∑

α

∮

SF

|vvvαkkk |dS . (20)

Consequence: vvvαkkk → vvvαkkk/2 due to the lattice.

Specific heat :

cV (T ) ≃
π2

3
g(εF)T . (21)

Density of states :

g(εF) =
1

(2π)3~

∑

α

∮

SF

dS
|vvvαkkk |

. (22)

→ Cancellation effect.
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summary

Unbound neutrons in the shallow layers of the inner crust are strongly
scattered by the lattice, but due to cancellation effect, the specific is
very similar to that of a free Fermi gas.

N. Chamel, J. M., E. Khan, submitted
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∆ 6= 0

BCS-BEC crossover
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BCS-BEC crossover in cold atomic gas

Magnetic Feshbach resonance
Interaction characterized by s-
wave scattering length:
a > 0 repulsion, a < 0 attrac-
tion, large |a| strong interaction.

• BEC state of diatomic
molecules (a >0)
condensation in the ground
state
narrow in r , large in E .

• BCS-BEC crossover region
Generalized “Cooper pairs”
Unitary limit: 1/kF a → 0

• BCS state of cooper pairs
(a <0)
pairing in momentum space
near the Fermi energy
narrow in E , large in r .
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General properties of the BCS-BEC phase tansition

J.R. Engelbrecht, et al., PRB 55, 15153 (1997)
M. Matsuo, PRC 73, 044309 (2006)

(kFnann)
−1 P(dn) ξrms/dn ∆n/ǫFn νn/ǫFn

−1 0.81 1.10 0.21 0.97 BCS boundary
0 0.99 0.36 0.69 0.60 unitarity limit
1 1.00 0.19 1.33 −0.77 BEC boundary
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Adjustment of a simple pairing interaction
Reproduces the scattering length and the Pairing gap in uniform
matter obtained from microscopic treatment based on the realistic
N-N interaction.
self-consistent calculations of nuclear matter and nuclei.

Result of the adjustment:

g = g1 g = g1 + g2
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Effective mass (Sly4) and chemical potential
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Evolution of the Cooper pair wave function

Ψpair(k) = C uk vk (23)
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Occupation probabilitiesnn(k) and chemical potentialνn

nn(k) =
1
2

[

1 −
ǫn(k) − νn

En(k)

]

(24)
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Properties of the probabilityP(r )

P(r) =

∫ r

0
dr ′r ′2|Ψpair(r ′)|2 (25)
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Spatial correlations

ξrms =

∫ ∞

0
drr4|Ψpair(r)|2 and dn = ρ

1/3
n (26)
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BCS-BEC phase-diagram and pairing interactions
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Summary

• New effective pairing interaction which reproduces microscopic
pairing gaps in symmetric and neutron matter.

• Medium polarization effects:
→ reduction of the bare gap in neutron matter,
→ strong attraction (quasi-BEC state) in low density symmetric
matter.

Consequences: Strong correlations → modification of the EoS
What about constraints in nuclei ?

J. M., H. Sagawa, K. Hagino, Phys. Rev. C 76,
064316 (2007)
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Neutron pairs in semi-magic nuclei
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Binding energies
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Two neutrons separation energies
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Pairing gaps
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General Conclusions

Unbound neutrons in the crust has very interesting properties:

• scattered by the lattice

• specific heat close to that of a Fermi gas

• BCS-BEC crossover triggered by the density

We set up a treatment of the pairing which could be used in nuclear
matter and in nuclei.
→ Comparison with nuclei might provide constraints to the models.
In the futur, expect more microscopic calculations in symmetric
matter.
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Outlooks

Developpement of a Band theory including pairing.

Continue the link pairing in matter and in nuclei (inclusion of Coulomb
repulsion between protons, of the particle-vibration coupling, ...)
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