Gravitational wave sources in medium frequency band

Avetis Abel Sadoyan

- D.Sedrakian
- M.Hairapetyan

Yerevan State University

Funded by ANSEF PS-astroth-1389

Gravitational Waves

- Ripples in Spacetime
- Predicted Theoretically in 1916(Einstein),
- Initially were misinterpreted as coordinate waves: waves that have no physical meaning, that can disappear due to the change of coordinate frame (Eddington 1922)
- Piranii (1956) showed what will happen to experimental particles under GW

Perturbations of Space-Time

 that are described by wave equation

Two polarizations of Gravitational Wave interacting with experimental Particles

Types of GW Detectors

- Resonant Bar Detectors
- Laser Interferometers
- Einstein Telescope 2008
- Space based Interferometers

PPT Pulasar Timing Array

G. W. DETECTORS: Components and Noises

Measured Strain Noise Spectral Density of ALLEGRO

WIDENING THE BAND IN EXPLORER

EXPLORER has been on the air since May 2000 with:

-new, 10 μm gap transducer -New, high coupling SQUID

The noise temperature is < 3 mK for 84% of the time.

Bandwidth: the detector has a sensitivity better than 10^{-20} Hz^{-1/2} on a band larger than 40 Hz

I.Resonant Bar Detectors

<u>Name</u>	Place	Position	Bar	L	2R	Hz	Date	Т
ALLEGRO	Baton Rouge Louisiana	30°27'45"N 91°10'44"W	2300kg	3m	0.6m	~900hz	1991	4.2 K
<u>AURIGA</u>	Lengaro Italy	45°21'12"N 11°56'54"E	2300kg	3m	0.6m	~1Khz	1997	0.2 K
EXPLORER	Geneva Switzerland	46°27'N 6°12'E	2270kg	3m	0.6m	904.7hz 921.3hz	1989	2.6 K
<u>NAUTILUS</u>	Rome Italy	41°49'26"N 12°40'21"E	2300kg	3m	0.6m	908hz 924hz	1994	0.1 K
<u>NIOBE</u>	Perth Western Australia	31°56'S 115°49'E	1500kg			~700hz	1993	5.0 K

RESONANT DETECTORS:

Past

Future

J.Weber

II Generation Detectors: Interferometers

Interferometers

- LIGO
- VIRGO
- GEO
- TAMA
- AIGO

2x 4000m 1x 3000m 1x 600m 1x 300m 0x 500m acuum Chamber/ Active I solation Unit

Activity after C6/C7

- Shut down: end of September 05
- New injection bench:
 - Toward the nominal power
 - Full redesign
 - Faraday isolator
 - New Input Mode cleaner alignment scheme

New Recycling mirror

- Go to a monolithic mirror (flat geometry)
- Change the input telescope
- Use parabolic mirror on the "injection bench"
- Adjusting the reflectivity (92%-95%)
 - increase of the recycling factor
- 750W expected on the beam splitter
 - x30 compared to C7
- Back to vacuum: end of November 05 an 2008

Free falling test masses

1 kW Power ?

- $P_{eff} = Recycling factor \cdot P_{in}$ 20 W \rightarrow 1 KW
- Shot noise reduced by a factor ~7
- One more cavity to be controlled

Optics requirements

Recycling finesse*Arms finesse = 2500
→ mirror loss<< 1/2500

Mirror losses : poor reflectivity coating and substrate absorption scattered light polishing local defects, dust

Flat beams

Advantages of the flat beams:

Better averaging of the mirror thermal fluctuations → lower noise (2-3 times)

Interferometers

Displacement noise level of TAMA300

Current / S5 Sensitivities

Virgo sensitivity: April 2008

Sensitivities

Modern Physics of Compact Stars, Yerevan 2008

Laser Interferometers in World

III Generation Detectors LISA the Laser Interferometer Space Antenna 2008-2012

Spacecraft

The Parkes Pulsar Timing Array Project

Collaborators:

- Australia Telescope National Facility, CSIRO, Sydney
 - Dick Manchester, George Hobbs, David Champion, John Sarkissian, John Reynolds, Mike Kesteven, Grant Hampson, Andrew Brown, David Smith, Jonathan Khoo, (Russell Edwards)
- Swinburne University of Technology, Melbourne

Matthew Bailes, Ramesh Bhat, Willem van Straten, Joris Verbiest, Sarah Burke, Andrew Jameson

- University of Texas, Brownsville Rick Jenet
- Franklin & Marshall College, Lancaster Andrea Lommen
- ➢University of Sydney, Sydney Daniel Yardley
- National Observatories of China, Beijing Johnny Wen
- Peking University, Beijing Kejia Lee
- Southwest University, Chongqing Xiaopeng You
- Curtin University, Perth

Strain sensitivity

Modern Physics of Compact Stars, Yerevan 2008

Gap between Terrestrial Detectors and LISA

Modern Physics of Compact Stars, Yerevan 2008

DECIGO Roadmap

Back to Sources GW Sources at Laboratory?

- Beryllium rode
- $M \sim 6 \ 10^{10} g$,
- 2L~34m,
- $\omega \sim 10^3$ 1/sec
- $J_0 \sim 10^{-7} \text{ erg/sec}$
- $h \sim 10^{-33}$
GW Astrophysical Sources

- Expected sources of gravitational radiation include numerous astrophysical sources such as compact binaries, suppermassive black holes, and binary coalescence
- In addition, there is an expected cosmological background of gravitational radiation arising from the very earliest times of the universe

Events Generating Gravitational Waves: GW Sources

- BH-BH Collisions
- Star Collisions 10⁴⁴erg/s
- Mergers NS-NS 1/1000y/Galaxy
- Asymmetric Explosion
- GRB activity

GW Astrophysical Sources

- Expected sources of gravitational radiation include numerous astrophysical sources such as compact binaries, suppermassive black holes, and binary coalescence
- In addition, there is an expected cosmological background of gravitational radiation arising from the very earliest times of the universe

Gravitational radiation generated by binary systems or rotating aspherical objects.

Permanent Sources of Gravitational Waves

- Binary Systems $2x10^{32}$ erg/s
- Asymmetric Rotation of a star
- Oscillations

• These sources are permanent

(SS) Self-Similar Oscillations:

- Coordinates $x_{\alpha} = x_{\alpha}^{0} (1 + \eta \sin \omega t)$
- η is amplitude of oscilation, should be less then 1. ω is frequency of oscillation.

$$Q_{\alpha\beta} = \int \rho \left(x_{\alpha} x_{\beta} - \frac{1}{3} \delta_{\alpha\beta} x_{\gamma}^2 \right) dV$$

$$Q_{\alpha\beta} = Q^0_{\alpha\beta} \left(1 + 2\eta \sin \omega t \right)$$

• Quadruple Moment $Q_{xx}^0 = Q_{xx}^0$ became time dependent Modern Physics of Compact Stars, Yerevan 2008

 $Q_{yy}^{0} = Q_{yy}^{0}; Q_{zz}^{0} = -2Q_{yy}$

Gravitational Radiation Intensity

- Gravitation radiation intensity :
- Using the eq. for Quadruple moment one can easily

$$J = \frac{G}{5c^5} \left| \frac{\mathbf{Q}}{\mathbf{Q}}_{\alpha\beta} \right|^2$$

$$J_{0} = \frac{6G}{5c^{5}} \eta^{2} \omega^{6} |Q_{zz}^{0}|^{2}$$

obtain

$$J = \frac{6G}{5c^5} \eta^2 \omega^6 |Q_{zz}^0|^2 \cos^2 \omega t' = J_0 \cos^2 \omega t'$$

Calculation of GW amplitudes

$$\dot{h}_{+} = \frac{1}{2} \left(\dot{h}_{yy} - \dot{h}_{zz} \right) = -\frac{G}{c^{4}} r \left(\begin{array}{c} \cdots & \cdots \\ Q_{yy} - Q_{zz} \end{array} \right)$$

$$\dot{h}_{+} = \frac{3G\eta\omega^{3}}{c^{4}r} \left| Q_{zz}^{0} \right| \cos \omega t' = \frac{1}{r} \sqrt{\frac{7,5J_{0}G}{c^{3}}} \cos \omega t'$$

$$t') = \frac{1}{r} \left| \frac{7,5J_{0}G}{c^{3}} \sin \omega t' - \frac{3G\eta\omega^{2}}{c^{3}} \left| Q_{zz}^{0} \right| \sin \omega t' - h \sin \omega t$$

$$h_{+}(t') = \frac{1}{r} \sqrt{\frac{0}{c^3 \omega^2}} \sin \omega t' = \frac{3 \sigma \eta \omega}{c^4 r} \left| Q_{zz}^0 \right| \sin \omega t' = h_0 \sin \omega t'$$

Modern Physics of Compact Stars, Yerevan 2008

GW Amplitudes and SS Oscillation Amplitudes are:

$$\eta = \frac{1}{\omega^{3} |Q^{0}_{zz}|} \sqrt{\frac{5}{6} \frac{J_{0} c^{5}}{G}}$$

Gravitational Wave Sources

- Magnetized White Dwarfs
- Differentially rotating White Dwarfs

Energy Sources for Oscillation

- Deformation Energy of Star
- Energy of Differential Rotation

Continuous Energy sources for gravitational radiation

• Deformation energy release during the star spin-down can be a good continuous energy source

Non Rotating Star

Rotating Star

$$W_{def}(\Omega) = (M - M_0)c^2 - W_r(\Omega)$$

• M and M_o are mass of rotating and nonrotating configurations with same complete number of baryons N

$$W_r = I\Omega^2 / 2$$

$$\Delta M = (\alpha_0 - \alpha)mN$$

Parameters of neutron Stars & WDs with maximal angular velocity

$\rho_c \times 10^{-15}$ (g/cm ³)	$\frac{M}{M_{\Theta}}$	$\Omega_m \times 10^{-3}$ (sec ⁻¹)	$I \times 10^{-44}$ (g.cm ²)	ω ×10 ⁻³	$N \times 10^{-57}$	$D_{zz}^{0m} imes 10^{-43}$ (g cm ²)	$\alpha_0 - \alpha$	$W_{def} \times 10^{-53}$ (erg)
0.546	0.7815	5.97	4.92	3	1.51	7.68	0.082	1.85
1.14	1.3737	8.37	9.85	5	1.76	9.73	0.068	1.79
2.44	1.7127	12.3	11.1	7	2.02	30.7	0.07	2.10

				Ø				
$\rho_{c(6)}$	M/M_{Θ}	$\Omega_{ m max}$	I ₍₄₈₎		N ₍₅₇₎	Q ⁰ (48)	W _{r(49)}	$W_{def(49)}$
2.403	0.5946	0.196	128	0.758	0.4997	20.48	0.246	4.55
19.38	0.9993	0.476	88.6	0.794	0.8398	14.27	1.00	7.06
157.7	1.2731	1.063	39.5	1.51	1.0695	4.766	2.23	8.05
866.1	1.3502	2.042	15.9	1.99	1.1340	1.554	3.32	7.58
2586	1.3412	Modern 3.105	Physics of 8.17	Compact St 0.967	ars, Yerevan 1.1261	2008 0.673	3.94	6.89

Gravitational Radiation Intensity

$$J = \frac{6G}{5c^5} \eta^2 \omega^6 |Q_{zz}^0|^2 \cos^2 \omega t' = J_0 \cos^2 \omega t'$$

$$J_{0} << \omega^{6} |Q^{0}_{zz}|^{2} \frac{6}{5} \frac{G}{c^{5}}$$

Thermal Losses Results

Why White Dwarfs?

- White Dwarfs(WD) are stellar configurations with central densities ~10⁶-10⁹ g/ cm³
 -they are on the border between normal stars and relativistic configurations
- Quadrupole moment of WDs is Q~10⁴⁸g cm²
 several orders higher then Neutron Star's Quadrupole moment

Why White Dwarfs?

- White Dwarfs(WD) are the most close potential sources of GWs
 - there are White Dwarfs at 8 pc distance.
- WD Population is estimated about ~10⁸ in the Galaxy

-WDs are the largest population among potential astrophysical sources of GWs

Parameters of neutron stars & WDs with maximal angular velocity

 \emptyset

$\rho_c \times 10^{-15}$	М	$\Omega_m \times 10^{-3}$	$I \times 10^{-44}$	ω	$N \times 10^{-57}$	$D_{zz}^{0m} \times 10^{-43}$	$\alpha_0 - \alpha$	$W_{def} \times 10^{-52}$
(g/cm ³)	$\overline{M_{\Theta}}$	(\sec^{-1})	$(g.cm^2)$	×10 °		$(g \text{ cm}^2)$		(erg)
0.546	0.7815	5.97	4.92	3	1.51	7.68	0.082	1.85
1.14	1.3737	8.37	9.85	5	1.76	9.73	0.068	1.79
2.44	1.7127	12.3	11.1	7	2.02	30.7	0.07	2.10
$\rho_{c(6)}$	M/M_{Θ}	$\Omega_{ m max}$	I ₍₄₈₎	ω	N ₍₅₇₎	Q ⁰ (48)	W _{r(49)}	W _{def (49)}
2.403	0.5946	0.196	128	0.758	0.4997	20.48	0.246	4.55
19.38	0.9993	0.476	88.6	0.794	0.8398	14.27	1.00	7.06
157.7	1.2731	1.063	39.5	1.51	1.0695	4.766	2.23	8.05
866.1	1.3502	2.042	15.9	1.99	1.1340	1.554	3.32	7.58
2586	1.3412	3.105	8.17	0.967	1.1261	0.673	3.94	6.89

Why White Dwarfs?

Frequency Range of WD Oscillations

Deformation Energy

$$W_{def}(\Omega) = (M - M_0)c^2 - W_r(\Omega)$$

 M and M_o are mass of rotating and nonrotating configurations with same complete number of baryons N

$$W_r = I\Omega^2/2$$
 $\Delta M = (\alpha_0 - \alpha)mN$

White Dwarfs Maximal deformation Energy versus Central density

Modern Physics of Compact Stars, Yerevan 2008

GW Amplitudes from WDs rotating with Keplerian angular velocities

Modern Physics of Compact Stars, Yerevan 2008

Mechanisms of GW Radiation

- GWs from Magnetized WDs: deformation energy is feeding oscillations -magnetodipol radiation torque is breaking rotation
- 2. GWs from differentially rotating WDs
- 3. GWs coming from WDs with triaxial shape

Types of Models of WDs

- Model <u>1.a</u> is calculated by requiring that the largest Doppler broadening of spectral lines due to pulsations be less than thermal Doppler broadening
- Model <u>1.m</u> is based on assumption that all non-dissipated part of deformation energy is going to oscillations, it is maximal possible model to that sense.

GWs from Magnetized WDs 1.a

WD Name	r (pc)	B (MG)	h _o	F	t (Gy)	η
PG 1031+234	142	500	6.0 10 ⁻²⁹	6.1 10-17	11.0	1.02 10-02
EUVE J0317-855	35	450	1.0 10-27	6.7 10-15	1.7	4.03 10-03
PG 1015+015	66	90	9.3 10 ⁻³⁰	1.1 10-18	571.9	7.09 10 ⁻⁰⁴
Feige 7	49	35	1.6 10-28	4.9 10-17	125.1	5.18 10-04
G99-47	8	25	3.5 10-27	5.9 10-16	50.6	3.70 10-04
KPD 0253+5052	81	17	2.9 10-30	4.6 10-20	11852	3.46 10-04
PG 1312+098		10	1.5 10-30	3.8 10-21	70313.	2.04 10-04
G217-037	11	0.2	9.0 10-31	8.2 10-23	2 108	4.08 10-06

GWs from Magnetized WDs 1.m

WD Name	r (pc)	B (MG)	h _o	F	t (Gy)	η
PG 1031+234	142	500	2.58·10 ⁻²⁸	1.13·10 ⁻¹⁵	11.0	4.7·10 ⁻²
EUVE J0317-855	35	450	9.69·10 ⁻²⁶	6.04·10 ⁻¹¹	1.7	3.8·10 ⁻¹
PG 1015+015	66	90	3.81.10-28	1.93·10 ⁻¹⁵	571.9	2.9.10-2
Feige 7	49	35	1.47·10 ⁻²⁶	3.96·10 ⁻¹³	125.1	4.7·10 ⁻²
G99-47	8	25	3.45·10 ⁻²⁵	5.84·10 ⁻¹²	50.6	3.7.10-2
KPD 0253+5052	81	17	2.06.10-28	2.33·10 ⁻¹⁶	11852.8	2.5.10-2
PG 1312+098		10	9.38·10 ⁻²⁹	1.56·10 ⁻¹⁷	70313.8	1.3.10-2
G217-037	11	0.2	8.97·10 ⁻²⁹	8.19·10 ⁻¹⁹	2.4 ·10 ⁷	4.1.10-4

Energy of Differential Rotation

- for each infinitesimally thin cylinder $\Omega(r_{\perp}) = \frac{L}{Mr_{\perp}^{2}} l(u(r_{\perp}))$
- energy of differential rotation is equal to

$$E_{diff} = 2\pi \int_{0}^{R} \int_{0}^{\sqrt{R^{2} - r_{\perp}^{2}}} r_{\perp} \rho(\sqrt{r_{\perp}^{2} + z^{2}}) \left(\Omega^{2}(r_{\perp}) - \Omega_{0}^{2}\right) r_{\perp}^{2} dr_{\perp} dz$$

Energy Losses to Friction

${ m M/M}_{\Theta}$	$ec arOmega_k$	I ₍₄₈₎	$Q^{0}_{(48)}$	$E_{di}(32)$	$E_{dis(\mathbf{B})}$
			× = = /	0.057	0.039
0.5946	0.196	128	20.48		
				1.1	0.73
0.9993	0.476	88.6	14.27		
				9.97	6.5
1.2731	1.063	39.5	4.766		
				47.3	30.7
1.3502	2.042	15.9	1.554		

Oscillating Magnetized White Dwarfs feed by Deformation Energy

WD	U _t	U _g	h ₀	F	τ (Gyr)	ή	B MG
J0317-855	$1.61 \cdot 10^{28}$	$1.58 \cdot 10^{29}$	9.69·10 ⁻²⁶	6.04·10 ⁻¹¹	1.7	3.84·10 ⁻¹	450
Feige 7	$1.68 \cdot 10^{28}$	$7.04 \cdot 10^{28}$	1.47.10-26	3.96.10-13	125.1	4.66.10-2	35
G99-47	8.55·10 ²⁷	$1.65 \cdot 10^{30}$	3.45.10-25	5.84·10 ⁻¹²	50.6	3.69.10-2	25
KPD 0253+5052	$1.42 \cdot 10^{26}$	$1.47 \cdot 10^{26}$	2.06.10-28	2.33·10 ⁻¹⁶	11852	2.47·10 ⁻²	17

Gravitational Radiation from Differentially rotating White Dwarfs for Angular momentum Distrib. N1

	Edifrot I	Ediss I	LifeTime (Gyr)	Jo I	ho	η Etta	F Flux
PG 1031+234	8.7411E+42	1.2574E+26	2,2	1.26E+25	1.39E-27	6.54E-01	3.3E-14
EUVE J0317-855	4.0005E+44	8.5162E+28	0,1	8.52E+27	5.86E-26	2.19E-01	2.2E-11
PG 1015+015	1.4919E+43	9.8724E+26	0,5	9.87E+25	4.39E-27	6.78E-01	2.6E-13
Feige 7	3.4674E+43	9.3271E+25	11,8	9.33E+24	3.63E-27	1.72E-01	2.4E-14
G99-47	1.6782E+44	4.5143E+26	11,8	4.51E+25	4.89E-26	7.83E-02	1.2E-13
KPD 0253+5052	7.0347E+42	1.012E+26	2,2	1.01E+25	2.18E-27	7.29E-01	2.6E-14
PG 1312+098	3.4271E+42	4.93E+25	2,2	4.93E+24	2.68E-27	1.04E+00	1.3E-14
G217-037	2.5262E+43	3.634E+26	2,2	3.63E+25	3.05E-26	3.85E-01	9.4E-14

Averege

Modern Physics of Compact Stars, Yerevan 2008 8.3F+43 1.1F+28 1.1F+27

1.9E-26 5.0E-01 2.8E-12

Gravitational Radiation from Differentially rotating White Dwarfs for Angular momentum Distrib. N2

			LifeTime			η	
			(Gyr)				
	Edifrot II	Ediss II		Jo II	ho	Etta	Flux
			1,4				
PG 1031+234	3.638E+42	8.4434E+25		8.44E+24	1.14E-27	5.36E-01	2.2E-14
			0,1				
EUVE J0317-855	9.4765E+43	5.5308E+28		5.53E+27	4.72E-26	1.77E-01	1.4E-11
			0,2				
PG 1015+015	4.3709E+42	6.4883E+26		6.49E+25	3.56E-27	5.50E-01	1.7E-13
			9,3				
Feige 7	1.8693E+43	6.3832E+25		6.38E+24	3.00E-27	1.42E-01	1.7E-14
			9,3				
G99-47	9.0472E+43	3.0895E+26		3.09E+25	4.04E-26	6.47E-02	8.0E-14
			1,4				
KPD 0253+5052	2.9278E+42	6.7951E+25		6.80E+24	1.79E-27	5.98E-01	1.8E-14
			1,4				
PG 1312+098	1.4263E+42	3.3104E+25		3.31E+24	2.20E-27	8.56E-01	8.6E-15
			1,4				
G217-037	1.0514E+43	2.4402E+26	~	2.44E+25	2.50E-26	3.15E-01	6.3E-14
Averege	Moder	n Physics of Cor	npact Stars, Ye	revan 2008	4.05.00		
	2.8E+43	(.1E+2/		7.1E+26	1.6E-26	4.0E-01	1.8E-12

Differentially Rotating WDs model 2.1

	Edifrot I	Ediss I	LifeTime (Gyr)	lo l	ho	η Etta	E Elux
	Lamort			001	110	Litta	
PG 1031+234	8.7411E+42	1.2574E+26	2,2	1.26E+25	1.39E-27	6.54E-01	3.3E-14
EUVE J0317-855	4.0005E+44	8.5162E+28	0,1	8.52E+27	5.86E-26	2.19E-01	2.2E-11
PG 1015+015	1.4919E+43	9.8724E+26	0,5	9.87E+25	4.39E-27	6.78E-01	2.6E-13
Feige 7	3.4674E+43	9.3271E+25	11,8	9.33E+24	3.63E-27	1.72E-01	2.4E-14
τ G99-47	1.6782E+44	4.5143E+26	11,8	4.51E+25	4.89E-26	7.83E-02	1.2E-13
KPD 0253+5052	7.0347E+42	1.012E+26	2,2	1.01E+25	2.18E-27	7.29E-01	2.6E-14
PG 1312+098	3.4271E+42	4.93E+25	2,2	4.93E+24	2.68E-27	1.04E+00	1.3E-14
G217-037	2.5262E+43	3.634E+26	2,2	3.63E+25	3.05E-26	3.85E-01	9.4E-14

Average

1.9E-26

Differentially Rotating WDs model 2.2

			LifeTime (Gvr)			η	
	Edifrot II	Ediss II		Jo II	ho	Etta	Flux
			1,4				
PG 1031+234	3.638E+42	8.4434E+25		8.44E+24	1.14E-27	5.36E-01	2.2E-14
			0,1				
EUVE J0317-855	9.4765E+43	5.5308E+28		5.53E+27	4.72E-26	1.77E-01	1.4E-11
			0,2				
PG 1015+015	4.3709E+42	6.4883E+26		6.49E+25	3.56E-27	5.50E-01	1.7E-13
			9,3				
Feige 7	1.8693E+43	6.3832E+25		6.38E+24	3.00E-27	1.42E-01	1.7E-14
			9,3				
G99-47	9.0472E+43	3.0895E+26		3.09E+25	4.04E-26	6.47E-02	8.0E-14
			1,4				
KPD 0253+5052	2.9278E+42	6.7951E+25		6.80E+24	1.79E-27	5.98E-01	1.8E-14
			1,4				
PG 1312+098	1.4263E+42	3.3104E+25		3.31E+24	2.20E-27	8.56E-01	8.6E-15
			1,4				
G217-037	1.0514E+43	2.4402E+26		2.44E+25	2.50E-26	3.15E-01	6.3E-14

Triaxsial WDs model 3.r

• Rotating triaxsial white dvarfs of ellipsoidal shape

$\rho_c \times 10^6$, g/cm ³	M/M _{\Overline{O}}}	$R_e \times 1$ 0 ⁸	$I_3 \times 10^4$ g.cm ²	$\Omega_{ m max}$	H, km	ε×10-5	J ₀ ×10 ²⁹ erg/sec	h ₀	$ au_0 imes 10^2$ Gyear
2.403	0.5946	10.93	128	0.196	0.699	6.4	0.667	0.69 10-24	12.25
19.38	0.9993	7,342	88.6	0.476	0.187	2.56	10.5	1.13 10-24	3.19
157.7	1.2731	4.625	39.5	1.063	0.058	1.26	62.1	1.23 10-24	1.19
866.1	1.3502	3.044	15.9	2.04	0.024	0.784	197	1.14 10-24	0.56
2586	1.3412	2.287	8.17	3.11	0.014	0.059	373	1.03 10-24	0.35

Triaxsial WDs model 3.n

• Non Rotating, oscillating triaxsial WDs of ellipsoidal shape

р _с ×10 ⁶ g/см ³	M ₀ /M _O	R×10 ⁸ cm	I ₀ ×10 ⁵⁰ g.см ²	ω, s ⁻¹	H, km	ε×10-5	h _o	τ×10 ³ Gyear
2.403	0.5087	8.873	4.81	0.758	0.539	6.1	2.1 10-26	0.35
19.38	0.8854	5.903	3.70	0.794	0.137	2.3	3.4 10-26	2.59
157.7	1.1612	3.747	1.96	1.51	0.042	1.1	3.7 10-26	1.60
866.1	1.2538	2.492	0.934	1.99	0.017	0.69	3.4 10-26	2.92
2586	1.2582	1.888	0.538	0.967	0.010	0.52	3.1 10-26	160
Stochastic background level

• Background is not isotropic: Assuming a galactic distribution of white dwarfs to follow the disk population, we assign a density distribution of WDs:

$$\rho = \rho_0 e^{-r/R_0} e^{-z/h}$$

in galacto-centric cylindrical coordinates, with
R₀=2.5kpc and h=200pc

Conclusions

- Gravitational radiation spectrum near 1 hz is inhabited by Isolated White dwarfs
- Model 1.a $h_{av+} = 8.35 \ 10^{-27}$
- Model 1.m $h_{av+} = 7.94 \ 10^{-25}$
- Model 2.1 $h_{av+} = 2.01 \ 10^{-25}$
- Model 2.2 $h_{av+} = 1.62 \ 10^{-25}$
- Standard inflation gives $h \sim 10^{-27} 10^{-29}$ in this frequency range.

Peculiarities of GW Radiation in medium Frequency band

- Permanent radiation on a given medium frequency band, no changes in chirp for long time,-a big advantage for Data Analyses
- h+=2.0116E-25
- h+=1.6217E-25
- On Frequency range 0.12 0.32Hz a b

WHY GWs?

- Detection of gravitational wave radiation from isolated sources: sources that are not a part of a double system, will be very important to start a new discipline in physics *Astroseismology*.
- It will allow to open a new type of investigation of celestial bodies, through their chirp of gravitational radiation.

END

Modern Physics of Compact Stars, Yerevan 2008