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=~ Idea of extra dimensions has been

—

~ extensively
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- Used in supergravity and superstring
theories
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WhyFExtra aimensio)

Bliiiication of interactions

= (EfE] r} nensions offer new possibilities
fOE 9] _mklng gauge symmetries

"—“QE Ioglcal mass generation

--F-‘Hrerarchy problem
» Why D=47




2P Noerdstrom proposed a 5D vector
eor\ to simultaneously describe
ifomagnetism and a scalar version of
g:rﬁé"' ty

*‘? 019, Kaluza noticed that the 5D
-vgenerallzatlon of Einstein theory can

~ simultaneously describe gravitational and

electromagnetic interactions

* 1924, the role of gauge invariance and the
physical meaning of the compactification
of extra dimensions was elucidated by
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e 1970 s, Hig er-|men5|onal theorles
i ere elntroduced In physics to exploit the
26lal properties that supergravity and
Lo strmg theories possess for particular
_er Of spacetime dimensions

a=____—_,-?_—i" recently it was realized [Arkani-

:‘Hamed et al 1998, Randall & Sundrum
1999] that extra dimensions W|th a

- fundamental scale of order TeV-1 could

address the M,, - M, hierarchy problem and

therefore have direct implications for
collider experiments
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xtra dimensions are

Kaluza-Kleir ode
r]CC’:’fC‘IG for all fields

Brane- ‘leiclefmodels: Part of fields is localized on
el A oe urface (brane). The localization can be
Ealiz ad in field theorK but it is most natural in

| 'rm' ettlng of string theory. Gravity extends to all
= dimensions

= ”The space Is factorized into and 4D
~— part of the metric does not depend on extra
— Coordinates

4D part of the metric depends on extra
coordinates
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PElticle creation
\/r]CLl|=E polarization
Giaip ratlon of cosmological constant

_S@’croplzatlon of the cosmological
§'~:;_¢_xpan5|on

e Generation of cosmological
Inhomogene-ities by quantum
fluctuations




Sollrlelz ondltlons N Mo
WIIRCEON, gch .=d|mer.1

e ——am—

ne toroida
flcatlon
- St
,,L_
: f_' lcally iInequivalent field configurations

_— -—I—- -
- = S
e b s
— —

==) periodic boundary conditions

— OTEE

==) antiperiodic boundary conditions

P(x + L) =—¢(x)
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Bulk -?';'._5-'dimensional Anti-de Sitter (AdS)
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“Orbifold fixed points = e
(locations of the branes)  y=0 y=L







PUIREarY conditions in RS
eiieworia

D — -

BDLlrwdéry conditions for the field are derived integrating the
field equation about y =0 and y =L

For the untwisted scalar field (¢(y) = ¢(—y)) mixed boundary
== conditions are obtained with

L For the twisted scalar field (¢(y) = —p(—y)) Dirichlet bound-
ary conditions (Bq = By = 0) are obtained
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I} bo'rh";"" of higher-dimensional

morlelf" ‘the fields propagating in
rrw (o} a k are subject to boundary

- Fh = - - ----—~
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[F@UBntUM Fleri'ﬂagory the'imposition: of

gelRdaR.conditions en the field openrator
[EadSItor the change of the spectrum for
Vacul J= 1 (zero-point) fluctuations

A
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—esult the vacuum expectation values

=3

ﬁy5|cal observables are changed

i

H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)




@ student of Ehrenfest, worked with
Pauli and Bohr

e

— o Force between cavity walls
: r m2hc A B
— — —_— o)
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Casimir, 1948 Hendrik Brugt Gerhard
Casimir, 1909 - 2000





http://en.wikipedia.org/wiki/Image:Casimir_plates.svg
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a quantum fi
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N|0)=0 —
or the Hamilton operator

F - owem
* o H0)= 5 ; W, |0)

*ator [W,H]Z00O In the vacuum state the

. -s- Luctuates —>
_;;f:,.: nwal properties of the vacuum

' - ~V'acuum properties depend on the zero-point

—

— rﬂ'l_Jctuatlons Spectrum

- * External fields or boundary conditions imposed on a
quantum field change the spectrum of vacuum
fluctuations

* Vacuum expectation values of local physical
observables are changed (vacuum polarization)




Vacuimrquantum: effects
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Slmple example: Flat mode

D 1 :
RPXS Vacuum energy density for
& an massive

——

—

Dk +00

2I(2n)D 2 (emla) +k o’

=~ -] For scalar filed
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XEnormalized vacﬁum energy.
gigEsStresses rtopology RPxS!
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nergy — Kpjps (nam)

SRS 55 P=- z
-j-‘ . (27T)D/2 +2 (nam)D/2 +]

(=1’

For twisted
scalar

stresses in
actlfled P=-p

__ﬂ___ £*~s ace
— Vacuum stresses in

"J-cnmpactlfled subspace

b, 2m’” ikmm (nam)
D+l —
B (27.[)D/2+2 D/2

n=l (nam)



Eifiectivemetentialfor the size of
spIPECtied dimeEnsSions s

’ densities appear in the cosmological
fective p. for the scale

Decompactificatio
problem

- = fFeIds with masses
“mand m,

Graphs are plotted
for different values
of m/m,
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Whv.de Si yace-time?
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Enostintliationan/anmoedelsan. ...
sPoXximately dS 'spacetime s employed
WERSEIVE a NUMber of problems in standard
eOSITI010gY

P
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SAthe present epoch the universe is

=~ accelerating and can be well approximated
= by a world with a positive cosmological

~~ constant

* Due to the high symmetry numerous
physical problems are exactly solvable on
dS background and a better understanding
of physical effects in this bulk could serve
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Local geometry is the same, the global properties
of the space are not
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W value of the'energy- momentum tensor Is
ci the form

EMT for topological part
uncompactified
dS space-time
gravitational source of the

cosmological constant type

Is time dependent and breaks the dS
Invariance



=l Ulting en‘e’f‘gy density inflincompaciified
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ma

Renormalized vacuum energy density in uncompactified dS spacetime

for minimally and conformally coupled scalar fields in D = 3. The scaling
coefficient wmr minimally (conformally) coupled scalar fields.
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Early S oo of the cosmplogical evolution, [l

a(?) -

Topological part
dominates

- of the cosmological evolution, |

= Uncompactified dS part
/ dominates
)
e Topological part is damping

~oscillatory
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The topological parts in the VEV of the energy density for periodic (dashed

curve) and antiperiodic (full curve) spinor fields in dS spacetime with spatial
topology {e]g
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QS Ity ects in braneworld models are of
soNEIdErable phenomenological interest both in
Or]rl‘l("l’ pPhysics and In cosmology.

SIEEY world corresponds to a manifold with

OO" daries and all fields which propagate in the
Pl will give Casimir type contributions to the
e sa'@uum energy and stresses

= r’Vacuum forces acting on the branes can either
‘stabilize or destabilize the braneworld

® Casimir energz gives a contribution to both the
brane and bulk cosmological constants and has to
be taken into account in the self-consistent
formulation of the braneworld dynamics
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D+1-dim

AdS spacetime

Minkowskian branes R®" |ocated at y=a and y=b
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Field: lar field with an arbitrary
.upllng parameter
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on the branes:
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Randall-Sundrum braneworld models | =

RS two-brane.m

/ “Orbifold fixed points O O >
~—— (locations of the branes) y=0 =

% identification  y=0 y
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Wightman functl n T e ' ' Complete set of

W (x, x solutions to the
— field equation

i.." -

tatlon values (VEVs) of the
square and ihe

* \Wightman function determines the response of a
of the Unruh-deWitt type



second order differential

o o \ /|

Part induced by a Part induced by a
single brane at y=a single brane at y=b

Interference part

Vacuum energy Vacuum pressures Vacuum pressure
density in directions perpendicular to
parallel to the the branes



V/elelu)af

Sel;‘-action Force acting on the brane
force due to the presence of
the second brane

(Interaction force)

ler nce of the coefficients in the boundary
the vacuum interaction forces between the
*"«- be either or

-_:.
""'-\....-—

articular, the vacuum forces can be repulsive for small distances
actue for large distances -‘

= = Vacuum pressure
- on the brane

Interbrane distance
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Volume energy. 1 the bulk
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‘F*

e 3-'-~ due to the presence of the
i,.i_:_‘f on the boundary
= _:_f}_-":;.’~ alar field on manifolds with boundaries the energy-

mentum tensor in addition to the bulk part contains a
— (A.A.S., Phys. Rev. D69,

_,'_,' = Qos 12004)
i
Extrinsic T
curvature metric
tensor
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cor esponds to the generation of the
| on the branes by

s
= "Jrﬂduced cosmological constant is a function of the
, AdS , and of

 the

°In dependence of these parameters the induced
cosmological constant can be either or



PHN/SICS foY obsenrver on th
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1nterbrane distances the gravitational interactions on
i Z=- ne y=b are exponentially suppressed. This feature is used

- e ST s

s

|
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_:j:ﬂ_f-* e Randall-Sundrum model to address the hierarchy problem

ol

"= 1
-@_-‘f‘"iSame__ mechanism also allows to obtain a naturally small
~_ _cesmological constant on the brane generated by vacuum
fluctuations

Cosmological

Effective Planck mass
constant on the

brane y=j

on the brane y=/
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Randall- Sundrum brane model .., the brar =
e brane at y=>b

aYa ) | NEe -

" is obtained for
: T th _a1ue of the interbrane distance the cosmological constant
- ﬁﬁ gle uc:ed on the v15|ble brane is of the

Hidden brane Visible brane

Location of Standard
Model fields
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r |ara ]F:‘ ,JrrlCLJfFJ@S to-realizinga
floJ; eno logically viable version of the

rjr e "PUE It IS Intriguing to note that

nirr energies have the potential of

fUfEfe] IIy linking the issues of

':i;;-.-.___, dull stabilization
= LJarge/smaII dimensions
- ® dark energy

®* cosmological constant
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