Georgian National Astrophysical Observatory

Pulsar winds, a possible meetanism of transition into the force-free regime Zaza Osmanov D. Shapakidze G. Machabeli

The Modern Physics of Compact Stars, Yerevan, Armenia, September 17-23, 2008

Crab

Thus the plasma co-rotates

Problem: how the plasma is transferred through the light cylinder (LC)

Pulsars:

Crab

Mestel & Shibata 1994

outsidetheLCthereexistsadomainwithEBu0,providinghighenergy radiation

However, due to relativistic effects of the <u>mass</u> <u>increment</u> (Machabeli & Rogava 1994) the value of the radial acceleration appears to be limited

Some history

Co-rotation of a plasma flow cannot be maintained nearby the LC, and therefore, the further exploration of this phenomenon is needed for studying twisting of field lines

Co-rotation of a plasma flow cannot be maintained nearby the LC, and therefore, the further exploration of this phenomenon is needed for studying twisting of field lines

Co-rotation of a plasma flow cannot be maintained nearby the LC, and therefore, the further exploration of this phenomenon is needed for studying twisting of field lines

Near the LC zone, the value of the electric drift current provides the toroidal component of the magnetic field of the order of 10^2 G

Initial magnetic field is of order 10⁶G (Crab pulsar)

Therefore, a new mechanism is needed

Problem one: curvature drift

Curvature drift current (CDC) CDC will create the toroidal magnetic field

Current will inevitably twist the magnetic field line

Problem two: force-free

Rogava et al. 2003

For a given spiral there exists a characteristic velocity characterizing a force-free regime

Problem two: force-free

Rogava et al. 2003

For a given spiral there exists a characteristic velocity characterizing a force-free regime

Problem two: force-free

Rogava et al. 2003

For a given spiral there exists a characteristic velocity characterizing a force-free regime

Initial conditions

Field lines are almost straight with very small curvature

Plasma flow is composed of two components:

- Electron-positrons
- Beam component

Parametric instability

Machabeli et al. 2005; Osmanov et al. 2008

Linear analysis

Saturation: force-free regime

Due to the curvature drift instability the toroidal component will grow and the shape of the field lines will gradually transform to that of the Archiemde's spiral with $v_c=c$

The corresponding timescale is given by:

Saturation: force-free regime

Due to the curvature drift instability the toroidal component will grow and the shape of the field lines will gradually transform to that of the Archiemde's spiral with $v_c=c$

The corresponding timescale is given by:

Efficiency of the twisting process

P/P⁽¹⁾ ranges from 10¹¹s (PSR 0531) to 10¹⁸s (PSR 1952+29)

This effect is extremely efficient

Energy budget

Twisting requires a certain amount of energy, therefore it is essential to estimate pulsar's slowdown luminosity L_p comparing it to the "magnetic luminosity" $L_m = E_m/T$ **Energy budget**

Crab pulsar

Therefore, the twisting process is feasible

Results

Examining the pulsar magnetospheric relativistic plasma, we have studied the role of the parametrically excited CDI in the process of sweepback of magnetic field lines and the saturation process of the instability

Transition into the force-free regime has been studied for typical 1second and Crab type pulsars. For the both cases it was found that the corresponding timescales are less than pulsar's spin down rates by many orders of magnitude indicating high efficiency of the present process

Studying the problem of energy budget, we showed that energy required for twisting the magnetic field lines is less than energy provided by pulsar's slowing down by many orders of magnitude.

References:

Machabeli G., Osmanov Z. & Mahajan S., 2005, Phys. Plasmas 12, 062901

Machabeli G. & Rogava A., 1994, Phys.Rev. A, 50, 98

Mestel L. & Shibata S., 1994, MNRAS, 271, 621

Osmanov Z., Dalakishvili Z. & Machabeli Z. 2008, MNRAS, 383, 1007

Rogava A., Dalakishvili G. & Osmanov Z., 2003, Gen. Rel. and Grav. 35, 1133