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Variable stars have been known for a long time (Cepheids, RR Lyrae, ...)

Many attempts to explain their variability (eclipting binaries, giant cold spots 

etc.), but in the case of cepheids it is pulsation (Eddington 1930‘s)

In nowadays terms: Cepheids oscillate mainly in their fundamental and first 

overtone with frequencies

σ ∼
(

GM

R3

)1/2
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Our Sun oscillates as well

SOHO Doppler Image of the Sun‘s surface

© D. Hathaway

exaggerated high order mode

...and provides valuable 

information about its interior

->

Helioseismology

© A. Kosovichev
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One also observes solar quakes

© CACR
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Mode classification:

• (p)ressure-modes: Acoustic oscillations, pretty much like sound 

waves in the air with larger amplitudes towards the surface. 

Higher radial order means higher frequency

• (g)ravity-modes: These modes are driven by gravity/buoyancy in 

convection-like manner with large amplitudes towards the 

center. Higher radial order means lower frequency (only for non-

isentropic stars)

• (f)undamental mode: Intermediate mode with no radial nodes; 

lies between p- and g-modes

For nonrotating Newtonian stars, we have

• (r)otational-modes: The Coriolis force is the restoring agent in 

this case; frequencies are proportional to angular velocity 

Rotation introduces
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Why one should deal with Neutron Stars:

• Most exotic objects in the universe

! rapid (differential) rotation

! General Relativity

! superfluidity

! strong magnetic fields

! exotic nuclear physics
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General Relativistic Neutron Star Oscillations:

Solve

Gµν = 8π Tµν

∇µTµν = 0

directly (CACTUS, Whisky, Pizza...)

or linearize...

© I. Rica-Mendez



Relativistic Stellar Perturbation Theory:
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δ

(
Gµν = 8π Tµν

∇µTµν = 0

)

with energy-momentum tensor

Tµν = (ε + p)uµuν + pgµν

and line-element

ds2 = −eν(r,θ)dt2 + eµ(r,θ)(dr2 + r2dθ2) + eψ(r,θ)r2 sin2 θ(dφ− ω(r, θ)dt)2

Decompose the angular part of the perturbations in spherical harmonics

δp = p(r, t)Y l
m(θ, φ) , δuν = uν(r, t)Y l

m(θ, φ)

and neglect products of perturbations



Still much room for approximations

Oscillations of Compact Stars X

Most commonly used are:

• slow-rotation-approximation: include rotational corrections up to 

first order in Omega

• Cowling-approximation: neglect all metric perturbations and focus 

on the fluid motion

• Inverse Cowling-approximation: neglect all fluid perturbations and 

focus on the spacetime evolution

Solve the equations as eigenvalue problem or by direct

numerical integration
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Eigenvalue Problem:

Replace        by∂tf iσf

d

dr

(
ΓP

1
r2

d

dr
(r2ξ)

)
− 4

r

dP

dr
ξ + σ2ρξ = 0

︸ ︷︷ ︸
A · ξ = 0

© S. Boutloukos

Time Evolution:
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The numerical arena



The numerical arena



time-evolution of the zeta-component...

Demo: spherically symmetric velocity perturbation on a non-rotating 

neutron star
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Demo: spherically symmetric velocity perturbation on a non-rotating 

neutron star

time-evolution of the rho-component...
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• Oscillation frequencies and eigenfunctions change once rotation sets in
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• Oscillation frequencies and eigenfunctions change once rotation sets in
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What‘s the impact of GR to neutron star oscillations?

• changes in the frequencies of p-, f-, g-, and r-modes when 

compared to Newtonian results

! f-, p-modes: 

! g-modes:

! r-modes: 

• whole new class of (w)ave-modes; oscillations of the spacetime 

itself with frequencies

ν ! 1.5 kHz

ν ! 500 Hz

2πν ∼ Ω

ν ! 5 kHz
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GW Asteroseismology

By emitting gravitational radiation, the oscillation pattern can reveal 

the internal structure of neutron stars: mass, radius, EoS, rotation rate, 

B-field, ...
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GW Asteroseismology

+

=

fundamental quadrupolar mode

and first w-mode

(no rotation included)



Rotation splits non-axisymmetric modes
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Responsible for rotational instabilities

• Degeneracy of pro- and retrograde rotating modes is removed; consider for 

example m = +2/-2
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• How does the fundamental quadrupolar mode change with rotation?
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Some results (mainly Newtonian):

• f-mode:

! The m = 2 mode becomes 

unstable at !/!K > 0.85

! differential rotation will 

affect onset of instability (it 

happens earlier)

! Up to 10% of energy/

angular momentum is 

radiated by GWs

• r-mode:

! GW amplitude depends on 

saturation

! mode coupling might not allow 

for high amplitudes

! crust, hyperons, magnetic field 

affect the efficiency of the 

instability

• uncertainties:

! relativistic growth times

! nonlinear saturation

! effect of magnetic fields



Oscillations of Compact Stars XX

© K. Kokkotas

We‘ve just started...


